УДК 551.24

ПОЗДНЕВЕНДСКИЕ КОМПЛЕКСЫ В СТРУКТУРЕ МЕТАМОРФИЧЕСКОГО ОСНОВАНИЯ ПЕРЕДОВОГО ХРЕБТА БОЛЬШОГО КАВКАЗА

© 2018 г. В. А. Камзолкин^{1,*}, А. В. Латышев^{1,2}, Ю. П. Видяпин¹, М. Л. Сомин¹, А. И. Смульская¹, С. Д. Иванов¹

¹Институт физики Земли им. О.Ю. Шмидта РАН, 123242, Москва, ул. Б. Грузинская, д.10 ²Московский государственный университет им. М.В. Ломоносова, геологический факультет, 119991, Москва, Ленинские горы, д.1 *e-mail: vkamzolkin@gmail.com Поступила в редакцию 22.09.2017 г.

Приведены новые данные о составе, возрасте и взаимоотношениях с вмещающими и перекрывающими породами интрузивных образований основания зоны Передового хребта Большого Кавказа в бассейне р. Малая Лаба. Описаны особенности эволюции интрузивных образований, приуроченных к блыбскому метаморфическому комплексу. Впервые показано, что структурно нижние уровни разреза комплекса представляют собой выходы позневендского фундамента. Он сложен балканской свитой и прорывающим ее массивом кварцевых метадиоритов, для пород которого методом SHRIMP-II по трем U-Pb датировкам получен возрастной интервал от 549 ± 7.4 до 574.1 ± 6.7 млн лет. Герцинское магматическое событие представлено группой интрузий гранодиоритового состава, внедряющихся по серии разломов внутри блыбского комплекса вдоль его границы с зоной Главного хребта. Полученная оценка абсолютного возраста одной из интрузий319 ± 3.8 млн лет соответствует окончанию серпуховского века раннего карбона.

Ключевые слова: Большой Кавказ, зона Передового хребта, зона Главного хребта, структурная геология, блыбский метаморфический комплекс, поздневендский фундамент, геохронология, U–Pb датирование, анизотропия магнитной восприимчивости

DOI:

ВВЕДЕНИЕ

Зона Передового хребта имеет сложное строение и запечатлевает максимальную для Большого Кавказа длительность геологической летописи. В силу этого изучение её строения и истории развития имеет принципиальное значение для понимания тектоники и геодинамики всего Большого Кавказа. В основании разреза зоны располагаются кристаллические сланцы и гнейсы блыбского метаморфического комплекса, рассматриваемого как параавтохтонный комплекс или псевдофундамент [33]. Выше залегает пакет тектонических пластин, включающий: нижне-среднепалеозойские (силур-нижнекарбоновые) вулканогенно-осадочные кизилкольский (урупский) и андрюкско-тоханский комплексы, офиолитовый и ацгаринский метаморфический комплексы [33]. Тектонические пластины перекрываются отложениями неоавтохтонного молассового комплекса, которые имеют возраст в интервале от позднего визе до раннего триаса.

Исследования возраста и строения основания разреза зоны, представленного блыбским метаморфическим комплексом, его соотношений с лежащим выше урупским комплексом заложили основу для современных представлений о палеозойской эволюции Передового хребта Большого Кавказа и вызвали дискуссию. Так, взаимоотношения блыбского и урупского комплекса рассматривали как инфраструктуру и супраструктуру [1, 11, 12], фундамент и осадочный чехол [10,13], при этом в обоих случаях возраст пород блыбского комплекса считался нижнепалеозойским. Согласно другим представлениям, силур-девонские островодужные комплексы могли надвигаться на докембрийский фундамент [2, 3] или тектонически совмещаться с частично одновозрастными им породами блыбского комплекса [6, 7].

Для блыбского комплекса были установлены высокобарный и высокотемпературный характер метаморфизма [4] и среднепалеозойский возраст [33], более молодой по сравнению

Рис. 1. Схема тектонического районирования доюрского основания Большого Кавказа. Квадратом обозначен район исследования.

I–Бечасынская зона; *2*– зона Передового хребта; *3*– зона Главного хребта; *4*– выходы пород Дизской серии; 5– блыбский метаморфический комплекс; *6*– Главный Кавказский разлом; *7*– Пшекиш-Тырныаузская зона; *8*– граница зоны Передового хребта и Бечасынской зоны

с урупским комплексом, изменённым в условиях зеленосланцевой фации низких давлений.

Полученные данные о возрасте и строении блыбского комплекса позволяют дополнить исследование приуроченных к нему интрузивных образований, в особенности Балканского гранитоидного массива, занимающего центральную позицию в структуре кристаллического основания зоны Передового хребта [4, 33] (рис. 1). Балканский массив расположен в междуречье рек Большая Лаба и Малая Лаба и представляет собой крупный гранитоидный плутон сложного строения. Согласно модели А.А. Самохина [11], этот массив интрудировал кристаллические гнейсы и сланцы блыбского метаморфического комплекса, сформировав купольную структуру. Однако, в окрестностях Балканского массива (рис. 2) признаки купольного строения отсутствуют, преобладают структуры чешуйчатого типа[4]. Проведенные нами комплексные исследования позволили получить новые данные

о составе и эволюции интрузивных образований р. Малая Лаба, а также об их возрасте и взаимоотношениях с вмещающими и перекрывающими породами.

Нами выполнен петрографический анализ состава пород из Балканского массива и Южной интрузии и их метаморфической эволюции. Проведено U-Pb датирование проб из исследованных интрузивов. Проведено исследование анизотропии магнитной восприимчивости гранитоидов Балканского массива и Южной интрузии и вмещающих метаморфических комплексов и получены данные о локальных полях напряжений при формировании гранитоидов, приуроченных к блыбскому метаморфическому комплексу.

Целью статьи является исследование интрузивных образований, приуроченных к блыбскому метаморфическому комплексу, условий и времени их внедрения и особенностей метаморфической эволюции.

Рис. 2. Схема тектонического строения блыбского метаморфического комплекса в бассейне р. Малая Лаба и схематический геологический разрез (с использованием данных [5]).

1– альпийские и четвертичные образования; 2– юрские осадочные отложения; 3– отложения урупского вулканогенно-осадочного комплекса; 4– армовскиеметаморфиты; 5– Балканская свита; 6– гипербазиты; 7– Балканский массив диоритов; 8–гранодиориты Южной интрузии;9– геологические границы: a – стратиграфические, δ – тектонические; 10– границы покровов: a – Урупского, δ – Армовского; 11– речная сеть; 12–места отбора геохронологических проб (в сносках даны номера точек и соответствующие возраста); 13– ориентировки плоскостных текстур; 14– детально изученные участки; 15– линия разреза; 16–22– на схематическом геологическом разрезе: 16– известняки нижнего-среднего триаса; 17– гнейсы Армовского покрова; 18– гнейсы и амфиболиты Балканской свиты; 19– кварцевые диориты Балканского массива; 20– геологические границы: a – стратиграфические, δ – интрузивные, e-тектонические; 21– ориентировки: a – гнейсовидности кварцевых диоритов, δ – залегания пачки бластомилонитов

ГЕОТЕКТОНИКА № 3 2018

БАЛКАНСКИЙ МАССИВ

Породы Балканского массива (см. рис. 2) имеют следующий минеральный состав:

25% – амфибол, биотит, хлорит, мусковит,

50% – плагиоклаз,

25% — кварц, порода имеет высокий цветной индекс — М25.

Для этих пород характерна неоднородно-пятнистая текстура с линзами кварца, скоплениями полевых шпатов и амфибол-биотит-хлорит-мусковитовыми агрегатами. Последние изредка рассечены кинк-зонами с поперечным расположением в них мелких слюдистых чешуек. Структура исходной породы, предположительно, была гипидиоморфнозернистой с преобладанием таблитчатого плагиоклаза (размером до 5 мм) – это единственный минерал, который можно уверенно отнести к магматическим. Кварц сосредоточен в мономинеральных линзах размером до 5 мм с реликтами плагиоклаза внутри и является вторичным, а типичные для гранитоидов зерна магматического кварца в интерстициях между полевыми шпатами не встречены. Вероятно, в породе преобладает наложенный кварц. Остальные минералы также имеют вторичный характер и образуют наложенные структуры. Хлорит-слюдистые агрегаты образуют хаотично-чешуйчатую структуру, вероятно, в псевдоморфозах по магматическому темноцветному минералу. Внутри полосок и пластинок кинк-зон чешуйчатые минералы расположены перпендикулярно к границам полосок, образуя гребенчатую структуру. Гранобластовые структуры вторичных кварцевых линз осложнены коррозией плагиоклазовых реликтов. К наложенным структурам относятся и неразвитые скелетные пойкилобласты голубоватого амфибола по хлорит-слюдистым агрегатам.

Несмотря на то, что содержание кварца от 25% характерно для гранитов, порода не может быть отнесена к ним из-за преобладания вторичного кварца, связанного с наложенным процессом окварцевания. Высокий цветной индекс и небольшое количество магматического кварца (или, менее вероятно, его отсутствие) позволяют предполагать, что исходная магматическая порода имела несколько иной состав, в котором доля темноцветных минералов составляла 25%, плагиоклаза 60-70%, кварца 5-15%. Магматическая матрица может быть отнесена к кварцевым(?) диоритам, но в дальнейшем она подверглась существенным преобразованиям. В процессе преобразования локально формировалась ориентированная текстура, свойственная гранитогнейсам и выраженная, главным образом, в ориентировке темноцветных минералов.

Эволюция пород Балканского массива включает несколько этапов и стадий. На магматическом этапе, происходила кристаллизация из расплава кварцевого диорита. Низкотемпературные изменения магматических минералов, при которых плагиоклаз был соссюритизирован, а магматический биотит замещен хлорит-мусковитовым агрегатом с выделением рудного минерала и сфена, были возможны как на постмагматическом этапе, естественном при остывании массива. так и на низкотемпературной сталии регионально-метаморфического этапа. Мы выявили, что следующему этапу соответствует проградная стадия регионального метаморфизма, выраженная в развитии по слюдам и хлориту скелетных пойкилобластов голубоватого амфибола. Этот субщелочной амфибол является специфическим признаком регионального метаморфизма блыбского метаморфического комплекса. Его появление в диорите означает, возможно, смену этапов минералообразования с постмагматического на програлно-метаморфический. Сталия окварцевания относится к позднему этапу регионально-метаморфических преобразований, затронувших интрузивный массив. Также к этому этапу относятся локальные деформации такие, как текстурирование кварцевых линз и появление кинк-зон.

Кроме Балканского массива, в районе развития блыбского метаморфического комплекса расположены гнейсовидные гранодиориты, отличающиеся от балканских диоритов по характеру залегания, составу, истории развития. По-видимому, эти гранодиориты приурочены к серии разломов в южной части комплекса, ориентированных параллельно границе с зоной Главного хребта. Наиболее крупный выход этих пород обозначен нами как Южная интрузия и расположен в районе реки Большая Балканка (см. рис. 2).

ЮЖНАЯ ИНТРУЗИЯ

Породы Южной интрузии имеют следующий минеральный состав:

15% – биотит, хлорит, мусковит,

50% – плагиоклаз,

10% – калиевый полевой шпат,

25% — кварц.

Цветной индекс породы – М15.

Текстура породы неоднородно-пятнистая, в которой различаются линзы кварца, скопления полевых шпатов и биотит-хлорит-мусковитовые агрегаты. Порода заметно текстурирована — хлорит-слюдистые агрегаты вытянуты в одном направлении и пересекаются хаотично ориентированными жилками с серицитом, хлоритом, эпидотом и кальцитом. Структура породы среднезернистая, первично-магматические минералы, к которым относятся полевые шпаты, интерстиционный кварц и биотит, образуют гипидиоморфнозернистую структуру с преобладающим идиоморфизмом полевых шпатов по отношению к кварцу. Местами наблюдаются следующие наложенные структуры, образованные вторичными минералами, — реакционная (при замещении биотита хлоритом и сфеном), коррозионная (при замещении плагиоклазовых реликтов в кварцевых линзах) и бластокатакластическая (внутри вытянутых хлорит-эпидотовых жилок). Повышенный цветной индекс, относительно небольшое содержание микроклина и первичного кварца (для гранита) позволяют предполагать, что исходная магматическая порода содержала:

15% темноцветных минералов,

65% полевых шпатов,

20% кварца.

Данная порода может быть отнесена к гранодиоритам, с последующей низкотемпературной структурно-вещественной переработкой.

Эволюция породы заметно проще и включает меньше этапов и стадий, чем у балканских диоритов, т.к. лучше сохранились магматические минералы и структура, однако здесь сильнее проявлены хрупкие деформации и текстурирование. Последние свидетельствуют о наличии в твердом теле массива ориентированных напряжений. Для Южной интрузии нами установлено, что магматический этап сопряжен с кристаллизацией из расплава собственно гранодиорита, а этап структурно-вещественных преобразований (низкотемпературные замещения магматических минералов, окварцевание) сопровождался внутренними деформациями массива.

ЭТАПЫ ЭВОЛЮЦИИ ИНТРУЗИВОВ

Приведено сравнение метаморфической эволюции Балканского массива, Южной интрузии и вмещающих пород блыбского комплекса, что позволяет выявить общие этапы преобразований и соотнести во времени проявления магматических и метаморфических процессов.

Нами выделены пять значительных этапов эволюции пород блыбского метаморфического комплекса.

В породах комплекса обнаружены реликты высокобарной минеральной ассоциации. Кроме того, здесь встречаются пластины эклогитов [8], что с учетом проведенных исследований фенгитов из гнейсов и сланцев комплекса позволяет предположить существование для них этапа высокобарного метаморфизма, который мы рассматриваем как первый этап метаморфизма.

На втором этапе данные породы обнаруживают признаки последующей глубокой переработки в условиях эпидот-амфиболитовой фации, в процессе которой формировалась повсеместная ассоциация голубоватого амфибола с эпидотом. Третьим этапом эволюции комплекса является наложенная альбитизация, которая в разной степени затронула все породы блыбского метаморфического комплекса.

Четвертый и пятый этапы являются завершающими стадиями эволюции комплекса, к которым относится бластокатаклаз и затем — диафторез, который включает кислотную (окварцевание) и щелочную (замещение амфибола и эпидота биотитом) стадии.

История преобразований Балканского массива и Южной интрузии позволяет оценить их позицию в эволюции всего блыбского метаморфического комплекса. Так, в кварцевых диоритах Балканского массива отсутствуют свидетельства высокобарного метаморфизма. Начиная с этапа регионального метаморфизма в условиях эпидот – амфиболитовой фации, происходит совместная эволюция Балканского массива с вмещающими породами блыбского метаморфического комплекса. В породах Южной интрузии этап пойкилобластеза амфибола по хлориту, общий для Балканских диоритов и блыбского метаморфического комплекса, отсутствует. Таким образом, метаморфическая эволюция Южной интрузии, совместная с блыбским метаморфическим комплексом и Балканскими диоритами, ограничивается низкотемпературными преобразованиями и окварцеванием и указывает на более молодой возраст Южной интрузии.

ОПРЕДЕЛЕНИЕ АБСОЛЮТНОГО ВОЗРАСТА ИНТРУЗИВОВ Р. МАЛАЯ ЛАБА

Для определения возраста интрузивов блыбского метаморфического комплекса был применен метод U-Pb датирования по цирконам. Анализы были выполнены на ионном микрозонде SHRIMP-II в Центре Изотопных Исследований Всероссийского научно-исследовательского геологического института им. А.П. Карпинского (г. Санкт-Петербург) по стандартной методике [26, 36]. Зерна циркона, отобранные вручную при помощи оптического микроскопа, помещались в эпоксидную матрицу совместно со стандартными цирконами 91500 [35] и Temora [15]. Цирконы, затем, шлифовались примерно до половины толщины. Внутренняя структура цирконов изучалась средствами оптической микроскопии и катодолюминесценции. Для анализа предпочтительно выбирались области с низкой интенсивностью катодной люминесценции без видимых трещин и включений. Поверхность образца покрывалась слоем 99.999% золота толщиной 0.01 мкм. Ионные токи измерялись вторично-электронным умножителем в режиме сканирования по массам. Ионизация вещества образца достигалась бомбардировкой анализируемых участков зерен циркона потоком первичных O_{2}^{-} . Эллиптическая аналитическая точка размером 27

Точка	²⁰⁶ Pb _c , %	U, м.	лн ⁻¹	Th, млн ⁻¹	²³² Th/ ²³⁸ U	²⁰⁶ Pb	*, млн ⁻¹	²⁰⁶ Рb возраст ¹ ,	/ ²³⁸ U млн лет	²³⁸ U Обл млн лет ²³⁸ U/	
KZ16-5a-1.1	0.15	204	41	1532	0.78	10	63.0	572 ± 11		$10.75 \pm 2.0\%$	
KZ16-5a-1.2	0.00	129	97	657	0.52	10	05.0	579 ± 11		$10.64 \pm 2.0\%$	
KZ16-5a-2.1	0.05	3872		2775	0.74	3	13.0	580 ± 10		$10.61 \pm 1.9\%$	
KZ16-5a-3.1	0.00	2165		2488	1.19	174.0		577 ± 11		$10.68 \pm 1.9\%$	
KZ16-5a-4.1	0.14	1504		655	0.45	121.0		577 ± 11		$10.67 \pm 2.0\%$	
KZ16-5a-5.1	0.28	1017		456	0.46	80.0		563 ± 11		$10.92 \pm 2.1\%$	
KZ16-5a-6.1	0.00	213	39	1515	0.73	170.0		572 ± 11		$10.78 \pm 1.9\%$	
KZ16-5a-7.1	0.20	298	37	2337	0.81	2	41.0	578 :	± 10 10.63		$\pm 1.9\%$
KZ16-5a-8.1	0.00	98	0	464	0.49	7	7.7	569 :	10.83		$\pm 2.1\%$
KZ16-5a-9.1	0.00	323	30	3974	1.27	2	57.0	571 :	± 10 10.79		$\pm 1.9\%$
	1				1						
Точка	Общиі ²⁰⁷ Рb/ ²⁰⁶	Общий 238 ₁ ²⁰⁷ Pb/ ²⁰⁶ Pb		U/ ²⁰⁶ Pb*1	²⁰⁷ Pb*/ ²⁰⁶	Pb* ¹	²⁰⁷ Pb	$*/^{235}U^{1}$	²⁰⁶ Pb*,	$/^{238}$ U ¹	ρ
KZ16-5a-1.1	0.0594 ± 2	.2%	10.	$8 \pm 2.0\%$	0.0582 ± 2	2.6%	0.746	± 3.2%	0.0929	± 2.0%	0.604
KZ16-5a-1.2	0.0608 ± 2	.7%	10.	$6 \pm 2.0\%$	0.0608 ± 2	2.7%	0.788	$\pm 3.4\%$	0.0940	$\pm 2.0\%$	0.602
KZ16-5a-2.1	0.0605 ± 1	.6%	10.	$.6 \pm 1.9\%$	$0.0601 \pm 1.6\%$		0.780	$\pm 2.5\%$	0.0942	± 1.9%	0.752
KZ16-5a-3.1	0.0587 ± 2	.1%	10.	$.7 \pm 1.9\%$	0.0587 ± 2	2.1%	0.758	$\pm 2.9\%$	0.0936	± 1.9%	0.670
KZ16-5a-4.1	0.0586 ± 2	.5%	10.	$7 \pm 2.0\%$	0.0575 ± 2	8%	0.742	$\pm 3.5\%$	0.0936	$\pm 2.0\%$	0.578
KZ16-5a-5.1	0.0610 ± 3	.1%	11.	$0 \pm 2.1\%$	0.0587 ± 4	.1%	0.739	$\pm 4.6\%$	0.0913 :	± 2.1%	0.462
KZ16-5a-6.1	0.0598 ± 2	.1%	10.	$.8 \pm 1.9\%$	0.0598 ± 2	2.1%	0.765	$\pm 2.9\%$	0.0928	± 1.9%	0.673
KZ16-5a-7.1	0.0602 ± 1	.8%	10.	$.7 \pm 1.9\%$	0.0585 ± 2	2.4%	0.757	± 3.1%	0.0939	± 1.9%	0.614
KZ16-5a-8.1	0.0594 ± 3	.3%	10.	$.8 \pm 2.1\%$	0.0594 ± 3	3.3%	0.757	± 3.9%	0.0923	$\pm 2.1\%$	0.544
KZ16-5a-9.1	0.0592 ± 1	.7%	10.	$.8 \pm 1.9\%$	0.0592 ± 1	.7%	0.756	$\pm 2.5\%$	0.0927	± 1.9%	0.739

Таблица 1. Результаты изотопного U-Pb датирования и рассчитанные возраста для цирконов из кварцевых диоритов Балканского массива (точка kz16-5a).

Примечание. ρ – корреляция ошибок. Ошибки приведены для доверительного интервала 1 σ , Pb_c и Pb^{*} соответствуют суммарному содержанию и содержанию радиогенного свинца соответственно. Погрешность при калибровке на стандартах 0,57% (не входит в приведенные значения погрешности). Для ¹ общее содержание свинца скорректировано по ²⁰⁴ Pb.

на 20 мкм на поверхности образца получена с помощью 120 мкм диафрагмы Кёлера. Ионный ток первичного пучка составлял $-4.4 \sim -4.6$ нА. Вторичные ионы вводились в масс-спектрометр под действием ускоряющего потенциала 10 кВ. Для юстировки центра пика ионного тока в каждом масс-спектре в процессе анализа использовались ионы с массами 196 (Zr₂O) и 254 (UO). Каждая аналитическая сессия начиналась и заканчивалась измерением стандартных цирконов. В процессе измерений каждый четвертый замер выполнялся на стандартном цирконе Temora. Полученные результаты обрабатывались с помощью программ SQUIDv1.12 и ISOPLOT/ Exv3.22 [27, 28], используя константы распада, предложенные Р.Х. Стейгером и Е. Егером [32]. Для введения поправки на нерадиогенный свинец по модели Д.С. Стейси и Д.Д. Крамерса [31] использовалось отношение ²⁰⁴ Pb/²⁰⁶ Pb.

Полученные нами результаты датирования гранитоидов р. Малая Лаба позволяют определить время проявления магматических событий в пределах основания зоны Передового хребта. Цирконы были выделены из двух проб гранитоидов западной части Балканского интрузива, вскрытой руслом р. Малая Лаба (см. рис. 2). Расстояние между точками отбора проб составило около 1 км. Цирконы пробы 16-5а (n = 10) эвгедральные (идиоморфные), обладают четко выраженной осцилляторной зональностью (рис. 3, Б, Б', табл. 1), что с учетом высоких Th/U отношений в диапазоне 0.45-1.27, свидетельствует о магматическом генезисе цирконов [14, 19, 22, 29, 30]. Особенностью данной пробы являются высокая плотность полученных датировок и чрезвычайно низкие значения среднего квадратичного взвешенного отклонения

Рис. 3. Катодолюминисцентные изображения исследованных цирконов и конкордии.

А, А' – Балканский массив (северная оконечность, балка Копцева, точка 124–1);

Б, Б' – Балканский массив(район балки Сухая, точка kz16-5a);

В, В' – Балканский массив (южная оконечность, р. Б. Балканка, точка kz16–4а);

Г, Г' – Южная интрузия гранодиоритов (точка kz16-6a). Эллипсы ошибок измерений возраста имеют доверительные интервалы 2σ.

Точка	²⁰⁶ Pb _c , %	U, млн ⁻¹	Th, млн ⁻¹	²³² Th/ ²³⁸ U	²⁰⁶ Рb* мл	тн ⁻¹	²⁰⁶ Pb/ ²³⁸ возраст ¹ , мл	U ін лет	Общи ²³⁸ U/ ²⁰	ий ⁶ Pb
KZ16-4a-7.1	0.91	1829	978	0.55	134.0		525.0 ± 10.0		$11.69 \pm 2.0\%$	
KZ16-4a-9.1	0.11	1839	961	0.54	135.0		529.0 ± 10.0		$11.68 \pm 2.0\%$	
KZ16-4a-2.1	0.17	2206	1472	0.69	69 171.0		556.0 ± 10.0		$11.09\pm1.9\%$	
KZ16-4a-10.1	0.00	6889	4372	0.66	0.66 539.0		561.7 ± 9.8		$10.98\pm1.8\%$	
KZ16-4a-4.1	0.00	5438	3554	0.68	0.68 427.0		563.7 ± 9.9		$10.94 \pm 1.8\%$	
KZ16-4a-6.1	0.08	2620	1699	0.67	208.0		569.0 ± 10.0		$10.83 \pm 1.9\%$	
KZ16-4a-5.1	0.02	8413	5163	0.63	669.0		570.3 ± 9.9		$10.81 \pm 1.8\%$	
KZ16-4a-3.1	0.06	10474	10282	1.01	837.0		572.7 ± 10.0		$10.76 \pm 1.8\%$	
KZ16-4a-1.1	0.00	2387	1645	0.71	192.0		577.0 ± 11.0		$10.69 \pm 1.9\%$	
KZ16-4a-8.1	0.00	829	305	0.38	67.3	67.3 581.0 ±		2.0 10.59 ± 1000		2.2%
		ı			I					
Точка	Общий ²⁰⁷ Pb/ ²⁰⁶ Pb ²³⁸ U/ ²⁰⁶		²³⁸ U/ ²⁰⁶ Pb*	¹ ²⁰⁷ Pb*/	²⁰⁶ Pb* ¹	207	$Pb^{*}/^{235}U^{1}$	²⁰⁶ F	²³⁸ U ¹	ρ
KZ16-4a-7.1	0.0731 ±	5.9%	$11.80 \pm 2.0\%$	6 0.0658	0.0658 ± 7.7%		$0.769 \pm 8.0\%$ 0.0		$48 \pm 2.0\%$	0.256
KZ16-4a-9.1	0.0590 ±	2.4%	$11.69 \pm 2.0\%$	6 0.0580	$0.0580 \pm 2.6\%$		0.684 ± 3.3% 0.08		$55 \pm 2.0\%$	0.618
KZ16-4a-2.1	0.0598 ±	2.1%	11.11 ± 1.9%	0.0584	± 2.7%	$0.725\pm3.4\%$		$0.0900 \pm 1.9\%$		0.577
KZ16-4a-10.1	0.0585 ±	1.2%	$10.98 \pm 1.8\%$	6 0.0585	± 1.2%	$0.734\pm2.2\%$		$0.0910 \pm 1.8\%$		0.835
KZ16-4a-4.1	0.0591 ±	1.4%	$10.94 \pm 1.8\%$	6 0.0591	± 1.4%	0.7	$44 \pm 2.3\%$	0.09	$14 \pm 1.8\%$	0.806
KZ16-4a-6.1	0.0599 ±	1.9%	$10.84 \pm 1.9\%$	6 0.0593	± 2.1%	0.7	$754 \pm 2.8\%$	0.09	22 ± 1.9%	0.681
KZ16-4a-5.1	0.0595 ±	1.1%	$10.81 \pm 1.8\%$	6 0.0593	± 1.1%	0.7	$756 \pm 2.1\%$ 0.09		$25 \pm 1.8\%$	0.854
KZ16-4a-3.1	0.0591 ±	1.0%	$10.76 \pm 1.8\%$	6 0.0587	± 1.1%	0.7	$752 \pm 2.1\%$	$52 \pm 2.1\%$ 0.09		0.860
KZ16-4a-1.1	$0.0595 \pm$	2.4%	$10.69 \pm 1.9\%$	6 0.0595	± 2.4%	0.7	$767 \pm 3.1\%$	0.09	36 ± 1.9%	0.634

Таблица 2. Результаты изотопного U-Pb датирования и рассчитанные возраста для цирконов из кварцевых диоритов Балканского массива (точка kz16-4a)

Примечание. ρ – корреляция ошибок. Ошибки приведены для доверительного интервала 1 σ , Pb_c и Pb^{*} соответствуют суммарному содержанию и содержанию радиогенного свинца соответственно. Погрешность при калибровке на стандартах 0,57% (не входит в приведенные значения погрешности). Для 1 общее содержание свинца скорректировано по ²⁰⁴ Pb.

 $0.0604 \pm 3.4\%$

 $0.786 \pm 4.0\%$

 $10.59 \pm 2.2\%$

 $0.0604 \pm 3.4\%$

KZ16-4a-8.1

Таблица 3. Результаты изотопного U-Pb датирования и рассчитанные возраста для цирконов из кварцевых диоритов Балканского массива (точка 124-1).

Точка	²⁰⁶ Pb _c , %	U, млн ⁻¹	Th, млн⁻¹	²³² Th/ ²³⁸ U,	²⁰⁶ Pb*, млн ⁻¹	²⁰⁶ Pb/ ²³⁸ U возраст ¹ , млн лет	Dis, %	²⁰⁷ Pb*/ ²³⁵ U ¹	²⁰⁶ Pb [*] / ²³⁸ U ¹ , %	ρ
124-1_1.1	0.00	87	83	0.99	6.60	546 ± 12	-7	0.699 ± 3.7	0.0884 ± 2.2	0.603
124-1_2.1	0.09	304	668	2.27	23.30	551 ± 11	0	0.721 ± 2.8	0.0893 ± 2.0	0.734
124-1_3.1	0.84	48	28	0.61	3.58	535 ± 14	-22	0.657 ± 9.5	0.0865 ± 2.6	0.278
124-1_4.1	0.42	76	61	0.83	5.78	545 ± 11	10	0.729 ± 5.6	0.0882 ± 2.2	0.395
124-1_5.1	0.80	56	25	0.47	4.31	549 ± 13	-18	0.686 ± 9.5	0.0889 ± 2.5	0.267
124-1_6.1	1.06	78	47	0.62	6.20	565 ± 12	-35	0.681 ± 8.3	0.0916 ± 2.3	0.273
124-1_7.1	0.69	52	23	0.47	3.88	537 ± 12	-7	0.685 ± 7.8	0.0868 ± 2.4	0.310
124-1_8.1	0.00	112	83	0.77	8.58	551 ± 11	6	0.733 ± 3.3	0.0893 ± 2.2	0.651
124-1_9.1	0.60	76	39	0.53	5.82	550 ± 12	6	0.729 ± 6.3	0.0890 ± 2.3	0.357
124-1_10.1	0.09	304	928	3.16	23.70	559 ± 11	-3	0.728 ± 2.7	0.0907 ± 2.0	0.759

Примечание. Dis – дискордантность, ρ – корреляция ошибок. Ошибки приведены для доверительного интервала 1 σ , Pb_c и Pb* соответствуют суммарному содержанию и содержанию радиогенного свинца соответственно. Погрешность при калибровке на стандартах 0,55%. Для ¹ общее содержание свинца скорректировано по ²⁰⁴Pb.

 $0.0944 \pm 2.2\%$

0.537

Точка	²⁰⁶ Pb _c , %	U, млн ⁻¹	Th, млн ⁻¹	²³² Th/ ²³⁸ U	²⁰⁶ Pb*	млн ⁻¹	²⁰⁶ Рb/ возраст ¹ ,	^{/238} U млн лет	Общий ²³⁸ U/ ²⁰⁶ Pb		
KZ16-6a-1.1	0.00	2691	934	0.36	11	17	317.5 ± 6.1		$19.81 \pm 2.0\%$		
KZ16-6a-2.1	0.00	3985	1213	0.31	17	74	318.8 ± 5.9		$19.72\pm1.9\%$		
KZ16-6a-3.1	0.00	4382	1815	0.43	191		319.0 ± 6.0		$19.71 \pm 1.9\%$		
KZ16-6a-4.1	0.12	4454	1585	0.37	192		314.5 ± 5.8		$19.98 \pm 1.9\%$		
KZ16-6a-5.1	0.14	3598	1697	0.49	157		319.7 ± 5.9		$19.64\pm1.9\%$		
KZ16-6a-6.1	0.00	3922	1325	0.35	174		324.1 ± 6.0		$19.39 \pm 1.9\%$		
KZ16-6a-7.1	0.00	4774	2029	0.44	210		321.3 ± 5.9		$19.57 \pm 1.9\%$		
KZ16-6a-8.1	0.00	3961	1465	0.38	17	73	318.9	± 5.9	$19.72\pm1.9\%$		
KZ16-6a-9.1	0.16	4665	2323	0.51	20)5	321.0	± 5.9	$19.56\pm1.9\%$		
KZ16-6a-10.1	0.19	2755	816	0.31	12	20	318.2	318.2 ± 6.0		$19.72\pm1.9\%$	
Точка	Общи ²⁰⁷ Pb/ ²⁰	ій 2 ⁶ Pb	³⁸ U/ ²⁰⁶ Pb* ¹	²⁰⁷ Pb*/ ²⁰	⁾⁶ Pb* ¹	²⁰⁷ Pt	0*/ ²³⁵ U ¹	²⁰⁶ Pb*	$/^{238}$ U ¹	ρ	
KZ16-6a-1.1	$0.0525 \pm$	3.8% 1	9.81 ± 2.0%	0.0525 ±	3.8%	0.360	6 ± 4.2%	0.0505	± 2.0%	0.460	
KZ16-6a-2.1	$0.0520 \pm$	2.2%	9.72 ± 1.9%	0.0520 ±	2.2%	$0.364 \pm 2.9\%$		$0.0507 \pm 1.9\%$		0.647	
KZ16-6a-3.1	$0.0533 \pm$	2.1%	9.71 ± 1.9%	0.0533 ±	$0.0533 \pm 2.1\%$		$3 \pm 2.9\%$	$0.0507 \pm 1.9\%$		0.674	
KZ16-6a-4.1	$0.0544 \pm$	2.1% 2	$0.00 \pm 1.9\%$	0.0534 ±	2.4%	$0.368\pm3.1\%$		$0.0500 \pm 1.9\%$		0.614	
KZ16-6a-5.1	0.0546 ±	2.3% 1	$9.67 \pm 1.9\%$	0.0535 ±	2.7%	0.375	$5 \pm 3.3\%$	0.0508	± 1.9%	0.581	
KZ16-6a-6.1	0.0528 ±	2.2% 1	$9.39 \pm 1.9\%$	0.0528 ±	2.2%	$0.375\pm2.9\%$		$0.0516 \pm 1.9\%$		0.648	
KZ16-6a-7.1	$0.0530 \pm$	2.1%	$9.57 \pm 1.9\%$	0.0530 ±	2.1%	0.374	$1 \pm 2.8\%$	0.0511	± 1.9%	0.670	
KZ16-6a-8.1	$0.0528 \pm$	2.3% 1	$9.72 \pm 1.9\%$	0.0528 ±	2.3%	0.369	$9 \pm 2.9\%$	0.0507	$\pm 1.9\%$	0.642	
KZ16-6a-9.1	$0.0541 \pm$	2.0% 1	$9.59 \pm 1.9\%$	0.0529 ±	2.5%	0.372	$2 \pm 3.1\%$	0.0511	± 1.9%	0.603	
KZ16-6a-10.1	0.0548 ±	2.6% 1	$9.76 \pm 1.9\%$	0.0532 ±	3.2%	0.371	$1 \pm 3.8\%$	0.0506	$\pm 1.9\%$	0.515	

Таблица 4. Результаты изотопного U-Pb датирования и рассчитанные возраста для цирконов из гранодиоритов Южной интрузии (точка kz16–6а).

Примечание. ρ – корреляция ошибок. Ошибки приведены для доверительного интервала 1 σ , Pb_c и Pb^{*} соответствуют суммарному содержанию и содержанию радиогенного свинца соответственно. Погрешность при калибровке на стандартах 0,57% (не входит в приведенные значения погрешности). Для 1 общее содержание свинца скорректировано по ²⁰⁴ Pb.

(СКВО = 0.00084). Конкордантный возраст полученный по пробе 574.1 \pm 6.7 млн лет. Для пробы 16—4а (n = 8) также типичны эвгедральные цирконы с тонкой осцилляторной зональностью (см. рис. 3 В, В', табл. 2). Значения Th/U для них также типичны для магматических цирконов и составляют 0.38—1.01. По пробе получен конкордантный возраст 567.9 \pm 6.9 млн лет (СКВО = 0.049).

Возрасты обеих проб являются поздневендскими и органично дополняют полученную нами ранее датировку из северной оконечности Балканского массива (124–1), конкордантный возраст для которой составил 549 \pm 7.4 млн лет (см. рис. 3, A, A') (табл. 3) [4]. Три датировки 124–1, 16–4а, 16–5а являются практически идентичными, как по возрасту, так и по облику цирконов. Учитывая пространственное расположение проб, мы выявили крупные выходы породпоздневендского возраста в бассейне р. Малая Лаба. В 2 км южнее места отбора проб из Балканского интрузива, в полосе выходов Южной интрузии гранодиоритов нами также была отобрана проба (16–6а) для определения возраста (см. рис. 2). По n = 10 эвгедральным цирконам с выраженной осцилляторной зональностью был получен конкордантный возраст 319 ± 3.8 млн лет (СКВО = 0.14) (рис. 3, Г, Г') (табл. 4), соотношения Th/U0.31–0.51 указывают на магматический генезис цирконов. Полученный возраст соответствует окончанию серпуховского века раннего карбона.

АНИЗОТРОПИЯ МАГНИТНОЙ ВОСПРИИМЧИВОСТИ ИНТРУЗИВОВ Р. МАЛАЯ ЛАБА

Для восстановления условий становления Балканского и Южного гранитных массивов и их последующей эволюции мы провели измерения анизотропии магнитной восприимчивости. Исследования магнитной текстуры широко применяются для реконструкции магматической и структурной

эволюции гранитных массивов и являются особенно эффективными при слабом выражении ориентированных текстур [16, 17, 21, 25, 34]. Нами было опробовано 14 сайтов (локаций) представляющих Балканский и Южный массивы, а также вмещающие метаморфиты блыбского комплекса. Из каждого сайта было отобрано от 10 до 20 ориентированных образцов.

Измерения анизотропии магнитной восприимчивости проводились на каппа-метрах MFK1-FA (AGICO) в лаборатории главного геомагнитного поля и петромагнетизма ИФЗ РАН им О.Ю. Шмидта (г. Москва) и петромагнитной лаборатории геологического факультета МГУ им. М.В. Ломоносова (г. Москва). Обработка измерений выполнялась в программе Anisoft 4.2 [18] с использованием статистических методов В. Йелинека [23].

Результаты измерений представлены в виде трехосного эллипсоида анизотропии магнитной восприимчивости (рис. 4). Величина магнитной восприимчивости в образцах гранитоидов Балканского массива варьирует в диапазоне $1.4 \cdot 10^{-4} - 2.5 \cdot 10^{-3}$ ед СИ, Южного массива – $1.5 \cdot 10^{-4} - 1.4 \cdot 10^{-3}$ ед. СИ, то есть по этому показателю изученные породы занимают промежуточное положение между магнетитовымии ильменитовыми гранитами [20, 34]. Это указывает на возможность значительного вклада в магнитную анизотропию, как ферромагнитных, так и парамагнитных минералов. Для вмещающих метаморфитов величина общей магнитной восприимчивости варьирует в диапазоне 7.3–8.2 $\cdot 10^{-4}$ ед. СИ.

Значения параметра Рј, показывающего степень анизотропии [24], для гранитоидов Южной интрузии являются наименьшими – от 1.01 до 1.06, что является типичным для слабо метаморфизованных магматических пород, не претерпевших значительной тектонической переработки [34]. Для Балканского массива величина этого параметра составляет в среднем 1.03–1.06 для центральной части (рис. 5, сайты 22–24), 1.04–1.07 для северного контакта (сайты 25–26) и 1.06–1.10 для

1 – максимальная ось эллипсоида анизотропии магнитной восприимчивости; 2 – средняя ось; 3 – минимальная; 4 – ориентировка плоскости гнейсовидности; 5 – полюса к гнейсовидности

Рис. 4. Примеры результатов измерения анизотропии магнитной восприимчивости для исследованных объектов.

А – сайт 16, метаморфитыблыбского комплекса;

Б – сайт 13, Балканский массив;

В – сайт 21, Южный интрузив. Стереографическая равноплощадная проекция, нижняя полусфера.

Рис. 5. Схема строения блыбского метаморфического комплекса в районе Балканского массива с ориентировками плоскостей, перпендикулярных минимальной оси эллипсоида анизотропии магнитной восприимчивости в изученных сайтах (с использованием данных [5]).

I – триасовые отложения; 2 – балканская свита; 3 – армовскиеметаморфиты; 4 – тела серпентинитов; 5 – Балканский массив; 6 – интрузии гранодиоритов; 7 – номера и положение сайтов анизотропии магнитной восприимчивости; 8 – ориентировки плоскостей, перпендикулярных к минимальной оси эллипсоида анизотропии магнитной восприимчивости

восточного контакта (сайты 13–15,18), для вмещающих гнейсов и сланцев блыбского комплекса — 1.1—1.2. Параметр Т, характеризующий форму эллипсоида анизотропии магнитной восприимчивости, в большинстве опробованных сайтов в среднем является положительным, что соответствует сплюснутому эллипсоиду (табл. 5). При этом очевидной зависимости между величинами Рј и Т обнаружить не удается.

В гранитоидах Балканского массива 4 изученных сайта из восточной приконтактовой зоны обладают так называемым "нормальным" типом эллипсоида анизотропии магнитной восприимчивости, при котором минимальная ось эллипсоида К3 ориентирована перпендикулярно к гнейсовидности, а максимальная ось К1 и средняя К2 лежат в плоскости ориентированной текстуры (см. рис. 4, Б). Так, в сайтах 13–15 по мере приближения к контакту массива минимальная ось меняет свою ориентировку с пологих западных падений на крутые северо-западные, затем — на юго-западные, разворачиваясь вместе с "полюсом" плоскости гнейсовидности. Во вмещающих для Балканского массива метаморфитах блыбского комплекса

ГЕОТЕКТОНИКА № 3 2018

КАМЗОЛКИН и др.

							K1	
Сайт	Объект	N, шт	К, ед. СИ	Pj	Т	D, град	I, град	Сі, град
13	Б	19	$7.26 \cdot 10^{-4}$	1.075	0.161	184.2	12.3	23.0/12.8
14	Б	15	$2.38 \cdot 10^{-3}$	1.073	0.033	177.9	19.5	28.2/22.1
15	Б	12	$1.57 \cdot 10^{-3}$	1.104	0.103	349.1	32.0	13.6/ 9.1
16	А	10	$7.36 \cdot 10^{-4}$	1.135	0.464	0.5	51.7	51.7/15.6
17	Ю	17	$1.32 \cdot 10^{-3}$	1.061	0.357	102.8	52.5	55.4/15.4
18	Б	16	$7.49 \cdot 10^{-4}$	1.062	-0.249	233.1	38.3	37.7/23.2
19	А	14	$8.13 \cdot 10^{-4}$	1.100	0.054	204.7	7.6	24.0/11.9
20	Ю	14	$1.71 \cdot 10^{-4}$	1.032	0.329	110.1	22.1	39.5/17.0
21	Ю	14	$1.58 \cdot 10^{-4}$	1.014	0.008	268.1	13.6	20.3/ 8.9
22	Б	20	$4.42 \cdot 10^{-3}$	1.052	0.222	104.5	18.3	58.8/15.9
23	Б	11	$1.07 \cdot 10^{-3}$	1.027	0.225	100.2	16.1	38.1/16.8
24	Б	14	$2.26 \cdot 10^{-3}$	1.050	0.062	137.6	26.8	9.5/7.9
25	Б	20	$2.81 \cdot 10^{-4}$	1.045	0.474	33.5	8.2	22.3/12.4
26	Б	14	$1.48 \cdot 10^{-4}$	1.064	0.328	177.4	6.2	72.9/17.8
	K2		К3					
		K2			К3		гней	совидность
Сайт	D,	K2	Ci,	D,	К3 I,	Ci,	гней аз. пад	совидность
Сайт	D, град	К2 І, град	Сі, град	D, град	К3 I, град	Сі, град	гней аз. пад град	совидность . уг. пад. град
Сайт	D, град 76.5	К2 І, град 54.4	Сі, град 25.3/21.9	D , град 282.3	К3 I, град 32.9	Сі, град 24.5/13.0	гней аз. пад град 93	совидность . уг. пад. град 42
Сайт 	D , град 76.5 79.5	К2 I, град 54.4 22.4	Сі, град 25.3/21.9 33.9/26.3	D , град 282.3 305.1	К3 І, град 32.9 59.6	Сі, град 24.5/13.0 33.2/22.7	гней аз. пад град 93 136	совидность . уг. пад. град 42 28
Сайт 13 14 15	D , град 76.5 79.5 96.8	К2 І, град 54.4 22.4 26.0	Сі, град 25.3/21.9 33.9/26.3 19.5/11.5	D , град 282.3 305.1 217.8	К3 І, град 32.9 59.6 46.5	Сі, град 24.5/13.0 33.2/22.7 19.0/ 8.1	гней аз. пад град 93 136 24	совидность . уг. пад. град 42 28 50
Сайт 13 14 15 16	D , град 76.5 79.5 96.8 122.8	К2 І, град 54.4 22.4 26.0 22.9	Сі, град 25.3/21.9 33.9/26.3 19.5/11.5 51.9/16.1	D , град 282.3 305.1 217.8 226.3	К3 I , град 32.9 59.6 46.5 28.8	Сі, град 24.5/13.0 33.2/22.7 19.0/ 8.1 19.7/14.3	гней аз. пад град 93 136 24 46	совидность . уг. пад. град 42 28 50 74
Сайт 13 14 15 16 17	D , град 76.5 79.5 96.8 122.8 301.8	К2 I , град 54.4 22.4 26.0 22.9 35.9	Сі, град 25.3/21.9 33.9/26.3 19.5/11.5 51.9/16.1 55.3/14.8	D , град 282.3 305.1 217.8 226.3 205.0	К3 I , град 32.9 59.6 46.5 28.8 9.2	Сі, град 24.5/13.0 33.2/22.7 19.0/ 8.1 19.7/14.3 18.7/11.2	гней аз. пад град 93 136 24 46 –	совидность . уг. пад. град 42 28 50 74 –
Сайт 13 14 15 16 17 18	D , град 76.5 79.5 96.8 122.8 301.8 115.4	К2 I , град 54.4 22.4 26.0 22.9 35.9 30.5	Сі, град 25.3/21.9 33.9/26.3 19.5/11.5 51.9/16.1 55.3/14.8 39.4/29.4	D , град 282.3 305.1 217.8 226.3 205.0 359.3	К3 I , град 32.9 59.6 46.5 28.8 9.2 36.7	Сі, град 24.5/13.0 33.2/22.7 19.0/ 8.1 19.7/14.3 18.7/11.2 32.6/23.2	гней аз. пад град 93 136 24 46 — 181	совидность . уг. пад. град 42 28 50 74 - 53
Сайт 13 14 15 16 17 18 19	D , град 76.5 79.5 96.8 122.8 301.8 115.4 108.9	К2 I , град 54.4 22.4 26.0 22.9 35.9 30.5 37.3	Сі, град 25.3/21.9 33.9/26.3 19.5/11.5 51.9/16.1 55.3/14.8 39.4/29.4 39.9/18.9	D , град 282.3 305.1 217.8 226.3 205.0 359.3 304.4	К3 I , град 32.9 59.6 46.5 28.8 9.2 36.7 51.7	Сі, град 24.5/13.0 33.2/22.7 19.0/ 8.1 19.7/14.3 18.7/11.2 32.6/23.2 40.5/15.9	гней аз. пад град 93 136 24 46 - 181 286	совидность . уг. пад. град 42 28 50 74 – 53 45
Сайт 13 14 15 16 17 18 19 20	D , град 76.5 79.5 96.8 122.8 301.8 115.4 108.9 308.1	К2 I , град 54.4 22.4 26.0 22.9 35.9 30.5 37.3 66.9	Сі, град 25.3/21.9 33.9/26.3 19.5/11.5 51.9/16.1 55.3/14.8 39.4/29.4 39.9/18.9 39.5/19.0	D , град 282.3 305.1 217.8 226.3 205.0 359.3 304.4 202.7	К3 I , град 32.9 59.6 46.5 28.8 9.2 36.7 51.7 6.5	Сі, град 24.5/13.0 33.2/22.7 19.0/ 8.1 19.7/14.3 18.7/11.2 32.6/23.2 40.5/15.9 19.4/16.7	Гней аз. пад град 93 136 24 46 — 181 286 —	совидность . уг. пад. град 42 28 50 74 – 53 45 –
Сайт 13 14 15 16 17 18 19 20 21	D , град 76.5 79.5 96.8 122.8 301.8 115.4 108.9 308.1 149.0	К2 I , град 54.4 22.4 26.0 22.9 35.9 30.5 37.3 66.9 63.5	Сі, град 25.3/21.9 33.9/26.3 19.5/11.5 51.9/16.1 55.3/14.8 39.4/29.4 39.9/18.9 39.5/19.0 25.1/20.1	D , град 282.3 305.1 217.8 226.3 205.0 359.3 304.4 202.7 3.8	К3 I , град 32.9 59.6 46.5 28.8 9.2 36.7 51.7 6.5 22.2	Сі, град 24.5/13.0 33.2/22.7 19.0/ 8.1 19.7/14.3 18.7/11.2 32.6/23.2 40.5/15.9 19.4/16.7 24.9/ 9.0	гней аз. пад град 93 136 24 46 — 181 286 — _ _	совидность . уг. пад. град 42 28 50 74 – 53 45 – – –
Сайт 13 14 15 16 17 18 19 20 21 22	D , град 76.5 79.5 96.8 122.8 301.8 115.4 108.9 308.1 149.0 227.9	К2 I , град 54.4 22.4 26.0 22.9 35.9 30.5 37.3 66.9 63.5 59.0	Сі, град 25.3/21.9 33.9/26.3 19.5/11.5 51.9/16.1 55.3/14.8 39.4/29.4 39.9/18.9 39.5/19.0 25.1/20.1 58.9/14.2	D , град 282.3 305.1 217.8 226.3 205.0 359.3 304.4 202.7 3.8 6.0	К3 I , град 32.9 59.6 46.5 28.8 9.2 36.7 51.7 6.5 22.2 24.1	Сі, град 24.5/13.0 33.2/22.7 19.0/ 8.1 19.7/14.3 18.7/11.2 32.6/23.2 40.5/15.9 19.4/16.7 24.9/ 9.0 18.4/17.6	гней аз. пад град 93 136 24 46 - 181 286 - - - - -	совидность . уг. пад. град 42 28 50 74 - 53 45 - - - - -
Сайт 13 14 15 16 17 18 19 20 21 22 23	D , град 76.5 79.5 96.8 122.8 301.8 115.4 108.9 308.1 149.0 227.9 205.8	К2 I , град 54.4 22.4 26.0 22.9 35.9 30.5 37.3 66.9 63.5 59.0 42.9	Сі, град 25.3/21.9 33.9/26.3 19.5/11.5 51.9/16.1 55.3/14.8 39.4/29.4 39.9/18.9 39.5/19.0 25.1/20.1 58.9/14.2 38.1/18.5	D , град 282.3 305.1 217.8 226.3 205.0 359.3 304.4 202.7 3.8 6.0 354.8	К3 I , град 32.9 59.6 46.5 28.8 9.2 36.7 51.7 6.5 22.2 24.1 42.7	Сі, град 24.5/13.0 33.2/22.7 19.0/ 8.1 19.7/14.3 18.7/11.2 32.6/23.2 40.5/15.9 19.4/16.7 24.9/ 9.0 18.4/17.6 19.3/16.8	гней аз. пад град 93 136 24 46 – 181 286 – – – –	совидность . уг. пад. град 42 28 50 74 – 53 45 – – – – – –
Сайт 13 14 15 16 17 18 19 20 21 22 23 24	D , град 76.5 79.5 96.8 122.8 301.8 115.4 108.9 308.1 149.0 227.9 205.8 334.5	К2 I , град 54.4 22.4 26.0 22.9 35.9 30.5 37.3 66.9 63.5 59.0 42.9 62.1	Сі, град 25.3/21.9 33.9/26.3 19.5/11.5 51.9/16.1 55.3/14.8 39.4/29.4 39.9/18.9 39.5/19.0 25.1/20.1 58.9/14.2 38.1/18.5 17.2/ 9.4	D , град 282.3 305.1 217.8 226.3 205.0 359.3 304.4 202.7 3.8 6.0 354.8 231.2	К3 I , град 32.9 59.6 46.5 28.8 9.2 36.7 51.7 6.5 22.2 24.1 42.7 7.0	Сі, град 24.5/13.0 33.2/22.7 19.0/ 8.1 19.7/14.3 18.7/11.2 32.6/23.2 40.5/15.9 19.4/16.7 24.9/ 9.0 18.4/17.6 19.3/16.8 17.2/ 8.0	Гней аз. пад град 93 136 24 46 — 181 286 — — — — — — — —	совидность . уг. пад. град 42 28 50 74 – 53 45 – – – – – –
Сайт 13 14 15 16 17 18 19 20 21 22 23 24 25	D , град 76.5 79.5 96.8 122.8 301.8 115.4 108.9 308.1 149.0 227.9 205.8 334.5 138.2	К2 I , град 54.4 22.4 26.0 22.9 35.9 30.5 37.3 66.9 63.5 59.0 42.9 62.1 60.3	Сі, град 25.3/21.9 33.9/26.3 19.5/11.5 51.9/16.1 55.3/14.8 39.4/29.4 39.9/18.9 39.5/19.0 25.1/20.1 58.9/14.2 38.1/18.5 17.2/9.4 30.7/16.4	D , град 282.3 305.1 217.8 226.3 205.0 359.3 304.4 202.7 3.8 6.0 354.8 231.2 299.1	К3 I , град 32.9 59.6 46.5 28.8 9.2 36.7 51.7 6.5 22.2 24.1 42.7 7.0 28.3	Сі, град 24.5/13.0 33.2/22.7 19.0/ 8.1 19.7/14.3 18.7/11.2 32.6/23.2 40.5/15.9 19.4/16.7 24.9/ 9.0 18.4/17.6 19.3/16.8 17.2/ 8.0 28.8/15.5	Гней аз. пад град 93 136 24 46 — 181 286 — — — — — — — — — —	совидность . уг. пад. град 42 28 50 74 – 53 45 – – – – – – – –

Таблица 5. Результаты измерения анизотропи имагнитной восприимчивости.

Примечание. Объекты: Б – Балканский массив, Ю – Южный интрузив, А – Армовскиеметаморфиты; К – общая магнитная восприимчивость; N – количество образцов, шт.; Рј – степень анизотропии; Т – параметр формы эллипсоида анизотропии магнитной восприимчивости; К1 – максимальная ось эллипсоида; К2 – средняя ось; К3 – минимальная ось. D – склонение; I – наклонение; Сi – радиусы овалов доверия. Для К, Рj, T, D, I – приведены средние значения по сайтам. Аз.пад. – азимут падения гнейсовидности; уг.пад. – угол падения гнейсовидности.

близ контакта минимальная ось K3 также нормальна к гнейсовидности, однако имеет резко отличную ориентировку (см. рис. 4, А) (см. табл. 5). Такие различия в близко расположенных точках внутри Балканского массива и его экзоконтактовой зоне свидетельствуют об отсутствии значительных тектонических напряжений, которые могли повлиять на магнитную текстуру одновременно гранитоидов и вмещающих пород, также контактового воздействия массива на метаморфиты армовской свиты блыбского комплекса, опробованные в сайте 16 (см. рис. 5). В то же время полученный результат может указывать на тектоническое совмещение гранитоидов Балканского массива и пространственно приуроченных к ним пород армовской свиты. В центральной и северной частях Балканского массива отчетливая гнейсовидность, как правило, отсутствует (см. табл. 4). Направления осей эллипсоида анизотропии магнитной восприимчивости существенно различаются в разных сайтах. Поскольку степень анизотропии в этих сайтах относительно низка по сравнению с восточным контактом массива, ориентировка минимальной оси K3, по-видимому, определяется положением интрузивных контактов и локальных разрывных нарушений (см. рис. 5).

В гранитоидах Южной интрузии во всех 3 сайтах плоскость К1-К2 залегает круто и простирается в СЗ направлении, при этом близ северного контакта интрузии (сайт 21) минимальная ось КЗ полого погружается на север, а в южной части интрузива (сайты 17 и 20) – на юг. Поскольку гранитоиды этого массива характеризуются низкой степенью анизотропии и преимущественно уплощенной формой эллипсоида, мы интерпретируем магнитную текстуру в образцах Южной интрузии как первично магматическую, связанную с контактовым стрессом при остывании расплава после внедрения. В этом случае ориентировка минимальной оси КЗ перпендикулярна контакту массива, а плоскость К1-К2 параллельна плоскости контакта. Тогда форму Южного интрузива можно описать как вал, линейно вытянутый в СЗ направлении вдоль регионального разлома (см. рис. 4, В), параллельного южному ограничению зоны Передового хребта.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

В результате проведенных нами исследований выявлены крупные выходы докембрийских пород в пределах блыбского метаморфического комплекса. Древнейшие изученные породы Передового хребта относятся к позднему венду и слагают Балканский массив кварцевых диоритов, общей площадью не менее 33 км². В северо-западной окрестности Балканского массива расположена мощная, не менее 500 м, пачка мигматитоподобных пород, представленная чередованием амфиболитов, гранатовых амфиболитов и лейкократовых жил (см. рис. 2), которые могут рассматриваться как вмещающие породы для Балканского массива, поскольку последние содержат их фрагменты виде ксенолитов. Древнейшие породы перекрываются лейкократовыми гранат-слюдяными гнейсами, кварц-слюдяными гнейсами и гранат-кианитовыми гнейсами, которые распространены в обоих бортах р. Малая Лаба, а также выходят в центральной и южной части разреза блыбского метаморфического комплекса в пределах р. Большая Лаба (армовская свита) [5]. С ними ассоциируют крупные тела серпентинитов, пластины эклогитов

и апоэклогитовых гранатовых амфиболитов. Возраст перекрывающих пород определен нами как среднепалеозойский [6, 33]. Так, для парагнейсов Большого Блыба находящихся в структурно верхней части разреза блыбского метаморфического комплекса (нижние уровни комплекса вскрываются к югу) методом лазерной абляции (LA-ICP-MS) для 25 зерен получен возраст 361.4 ± 3 млн лет.

Породы Балканского массива метаморфизованы на уровне эпидот-амфиболитовой фации. Для перекрывающих пород имеются свидетельства проявления высокобарного метаморфизма, которые подтверждаются как результатами фенгитовой мономинеральной барометрии[9], так и встречающимися здесь эклогитами, и находками минералов высокобарной ассоциации в виде включений в сульфидах [4]. Таким образом, породы Балканского массива и перекрывающие их гнейсы формировались в разное время, при различных термобарических условиях и были впоследствии совмещены. Контакт между протерозойскими и среднепалеозойскими породами в пределах блыбского метаморфического комплекса является тектоническим. В районе безымянной вершины с абсолютной отметкой 2351 м (см.рис. 2), наблюдается резкое изменение состава и степени разгнейсования и ориентировок гнейсовидности в породах Балканского массива и перекрывающих гранат-слюдяных гнейсах. В районе юго-западного склона г. Маркопидж в приконтактной зоне находится мощная (более 200 м) пачка бластомилонитов по диоритам Балканского массива. Исследования анизотропии магнитной восприимчивости также демонстрируют различие в ориентировках полей напряжения для протерозойского Балканского массива и перекрывающих пород (см. рис. 5).

выводы

1. В пределах блыбского метаморфического комплекса выделено два магматических события, соответствующих разным этапам эволюции комплекса. Первое событие, которое состоялось во время байкальской эпохи складчатости, соответствует внедрению крупного массива кварцевых диоритов в породы балканской свиты. Второе событие произошло в герцинское время, на границе раннего и среднего карбона. Внедрявшиеся интрузии гранодиоритов локализованы в юго-западной части блыбского комплекса на его границе с зоной Главного хребта, предположительно, вдоль разломов, запечатывая их.

2. Протерозойские породы в бассейне р. Малая Лаба выходят на дневную поверхность в тектоническом окне, при этом перекрывающие их среднепалеозойские породы находятся в покровном залегании. 3. В структуре блыбского метаморфического комплекса выделены поздневендский фундамент, сложенный балканской свитой и прорывающим ее балканским массивом кварцевых диоритов и среднепалеозойский армовский покров.

Благодарности. Исследования выполнены при поддержке РФФИ (Гранты № 16-35-00571, 16-05-01012, 17-05-01121) и гранта Правительства РФ № 14.Z50.31.0017.

СПИСОК ЛИТЕРАТУРЫ

- 1. Афанасьев Г.Д. Гранитоиды древних интрузивных комплексов северо-западного Кавказа // Труды института геологических наук. М.: Изд-во АН СССР, 1950. Вып. № 69. Петрографическая серия (№ 38). 243 с.
- Баранов Г.И., Донченко Г.Л., Сидоренко В.Ф. Новые данные о строении древнего основания среднепалеозойского синклинория Передового хребта на Северо-Западном Кавказе // Тр. по геологии и полезным ископаемым Северного Кавказа / Ставрополь: Ставропольское кн. изд-во, 1972. С. 35–43.
- Гамкрелидзе И.П., Шенгелия Д.М. Докембрийскопалеозойский региональный метаморфизм, гранитоидный магматизм и геодинамика Кавказа. М.: Научный мир, 2005. 460 с.
- Камзолкин В.А. Тектоника домезозойского основания западной части Передового хребта Северного Кавказа. Автореферат дисс... канд. геол.-мин. наук. М.: ИФЗ РАН, 2013. 26 с.
- Лаврищев В.А. Пруцкий Н.И., Семенов В.М. и др. Государственная Геологическая Карта РФ масштаба 1:200000 (Красная Поляна). Лист К-37-V. Объяснительная записка. Издание 2-е. С-Пб: ВСЕГЕИ, 2000. 142 с.
- Леонов Ю.Г. Большой Кавказ в альпийскую эпоху. М.: ГЕОС, 2007. 368 с.
- 7. Омельченко В.Л. О месте пород Блыбского комплекса в домезозойской структуре зоны Передового Хребта (Северный Кавказ) // Геотектоника. 2007. № 4, С. 60–70.
- Перчук А.Л. Метаморфизм кианитовыхэклогитов урочища красная скала (Передовой хребет Большого Кавказа) // Петрология. 1993. Т. 1, № 1. С. 98–109.
- Перчук А.Л. Петрология и минеральная хронометриякоровыхэклогитов. Автореф. дис... д-ра геол.-минерал. наук. М.: ИГЕМ РАН, 2003. 48 с.
- Потапенко Ю.Я. Стратиграфия и структура додевонских комплексов Северного Кавказа. Тбилиси: КИМС. 1982. 168 с.
- 11. *Самохин А.А.* Структурные особенности массива больших Балкан на Северном Кавказе // Изв. АН СССР. 1957. № 6. С. 81–91.

- 12. Чесноков С.В., Красивская И.С. Варисцийскийгеос инклинальныймагматизм Большого Кавказа. М.: Наука, 1985. 94 с.
- Ящинин С.Б. Геология, металлогения, рудно-минеральные ресурсы Северного Кавказа в начале XXI столетия. МинеральныеВоды: Кавказскаяздравница, 2008. 194 с.
- Belousova E., Griffin W., O'Reilly S.Y., Fisher N. Igneous zircon: trace element composition as an indicator of source rock type // Contrib. Mineral Petrol. 2002. Vol. 143. № 5. P. 602–622.
- Black L.P., Kamo S.L., Allen C.M., Aleinikoff J.N., Davis D.W., Korsch R.J., Foudoulis C. Temora 1: a new zircon standard for Phanerozoic U-Pb geochronology // Chemical Geology. 2003. Vol. 200. № 1–2. P. 155–170.
- Borradaile G.J., Henry B. Tectonic applications of magnetic susceptibility and its anisotropy // Earth Sci. Rev. 1997. Vol. 42. № 1–2. P. 49–93.
- Bouchez J.L. Granite is never isotropic: An introduction to AMS studies of granitic rocks / J.L. Bouchez, D.H.W. Hutton, W.E. Stephens (eds.) // Granite: From segregation of melt to emplacement fabrics. Holland. Dordrecht: Springer,1997. P. 95–112.
- Chadima M., Jelínek V. Anisoft 4.2. Anisotropy data browser. // Contributions to Geophysics & Geodesy. 2008. Vol. 38. P. 41–41. ISSN1335-2806. http://gauss.savba. sk/GPIweb/conferences/nt2008/abstr/Chadima-2.pdf
- Corfu F., Hanchar J.M., Hoskin P.W.O., Kinny P. Atlas of zircon textures // Rev. Mineral Geochem. 2003. Vol. 53. № 1. P. 469–500.
- 20. *Ellwood B.B., Wenner D.B.* Correlation of magnetic susceptibility with 18O/16O data in late orogenic granites of the southern Appalachian Piedmont // Earth Planet. Sci. Letters. 1981. Vol. 54. № 2. P. 200–202.
- Gregorova D., Hrouda F., Kohut M. Magnetic fabric of the granitic composite pluton VelkaFatra Mountains (Western Carpathians, Slovakia): a Variscan remnant within the Alpine edifice? // GeodinamicaActa. 2009. Vol. 22. № 1–3. P. 57–72.
- 22. Grimes C.B., Wooden J.L., Cheadle M.J., John B.E. "Fingerprinting" tectono-magmatic provenance using trace elements in igneous zircon // Contrib. Mineral Petrol. 2015. Vol. 170. № 5. P. 1–26.
- Jelínek V., Kropáček V. Statistical processing of anisotropy of magnetic susceptibility measures on groups of specimens // StudiaGeophisicaetGeodaetica. 1978. Vol. 22. № 1. P. 50–62.
- Jelínek V. Characterization of the magnetic fabrics of rocks // Tectonophysics. 1981. Vol. 79. № 3-4. P. T63-T67.
- 25. Joly A., Faure M., Martelet G., Chen Y. Gravity inversion, AMS and geochronological investigations of syntectonic granitic plutons in the southern part of the Variscan French Massif Central // J. of Struct. Geol. 2009. Vol. 31. № 4. P. 421–443.
- 26. *Larionov A.N., Andreichev V.A. Gee D.G.* The Vendian alkaline igneous suite of northern Timan: ion microprobe U–Pb zircon ages of gabbros and syenite / D.G. Gee,

V.L. Pease (eds.) // The Neoproterozoic TimanideOrogen of Eastern Baltica / London: Geol. Society, 2004. P. 69–74.

- 27. *Ludwig K.* SQUID2: A User's Manual / Berkeley Geochron. Center Spec. Publication. 2009. 110 p. http:// www.bgc.org/isoplot_etc/squid/SQUID2_5Manual.pdf.
- Ludwig K.R. User's Manual for ISOPLOT/Ex 3.75. A Geochronological Toolkit for Microsoft Excel / Berkeley Geochron. Center Spec. Publication. 2012. 75 p. http://www.bgc.org/isoplot_etc/isoplot/Isoplot3_75-4_15manual.pdf
- Möller A., O'Brien P.J., Kennedy A., Kröner A. The use and abuse of Th-U rations in the interpretation of zircon // EGS – AGU – EUG Joint Assembly: Geophys. Res. Abstr. / France. Nice: EGS. 2003. Vol. 5. abstractid: 12113.
- Rubatto D., Gebauer D. Use of cathodoluminescence for U-Pb zircon dating by ion microprobe: some examples from the Western Alps. / M. Pagel, V. Barbin, P. Blanc, D. Ohnenstetter (eds.) // Cathodoluminescence in geosciences. Heidelberg: Springer: 2000. P. 373–400.

- 31. *Stacey J.S., Kramers J.D.* Approximation of terrestrial lead isotope evolution by a two-stage model // Earth Planet. Sci. Lett. 1975. Vol. 26. № 2. P. 207–221.
- Steiger R.H., Jäger E. Subcommission on geochronology: convention of the use of decay constants in geoand cosmochronology // Earth Planet. Sci. Lett. 1977. Vol. 36. № 3. 359–362.
- Somin M.L. Pre-Jurassic Basement of the Greater Caucasus: Brief Overview // Turkish J. Earth Sci. 2011. Vol. 20. № 5. P. 545–610.
- 34. *Tarling D.H., Hrouda F.* The Magnetic Anisotropy of Rocks. London: Chapman and Hall. 1993. 217 pp.
- 35. Wiedenbeck M., Allé P., Corfu F, Griffin W.L., Meier M., Oberli F., Von Quadt A., Roddick J.C., Spiegel W. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses // Geostandards Newsletter. 1995. Vol. 19. № 1. P. 1–23.
- Williams I.S. U-Th-Pb Geochronology by ion microprobe / M.A. McKibben, W.C. Shanks III, W.I. Ridley (eds.) / Applications in microanalytical techniques to understanding mineralizing processes // USA. Littleton: Society of Economic Geologists. 1998. P. 1–35.

Рецензенты: М.Г. Леонов, Т.Н. Хераскова

ПОЗДНЕВЕНДСКИЕ КОМПЛЕКСЫ В СТРУКТУРЕ МЕТАМОРФИЧЕСКОГО ОСНОВАНИЯ ПЕРЕДОВОГО ХРЕБТА БОЛЬШОГО КАВКАЗА

В. А. Камзолкин^{1, *}, А. В. Латышев^{1,2}, Ю. П. Видяпин¹, М. Л. Сомин¹, А. И. Смульская¹, С. Д. Иванов¹

¹Институт физики Земли им. О.Ю. Шмидта РАН, 123242, Москва, ул. Б. Грузинская, д.10 ²Московский государственный университет им. М.В. Ломоносова, геологический факультет, 119991, Москва, Ленинские горы, д.1 *e-mail: vkamzolkin@gmail.com

Received 22.09.2017 г.

Abstract — Приведены новые данные о составе, возрасте и взаимоотношениях с вмещающими и перекрывающими породами интрузивных образований основания зоны Передового хребта Большого Кавказа в бассейне р. Малая Лаба. Описаны особенности эволюции интрузивных образований, приуроченных к блыбскому метаморфическому комплексу. Впервые показано, что структурно нижние уровни разреза комплекса представляют собой выходы позневендского фундамента. Он сложен балканской свитой и прорывающим ее массивом кварцевых метадиоритов, для пород которого методом SHRIMP-II по трем U-Pb датировкам получен возрастной интервал от 549 ± 7.4 до 574.1 ± 6.7 млн лет. Герцинское магматическое событие представлено группой интрузий гранодиоритового состава, внедряющихся по серии разломов внутри блыбского комплекса вдоль его границы с зоной Главного хребта. Полученная оценка абсолютного возраста одной из интрузий 319 ± 3.8 млн лет соответствует окончанию серпуховского века раннего карбона.

Keywords: Большой Кавказ, зона Передового хребта, зона Главного хребта, структурная геология, блыбский метаморфический комплекс, поздневендский фундамент, геохронология, U-Pb датирование, анизотропия магнитной восприимчивости

DOI: (редакции)

ГЕОТЕКТОНИКА № 3 2018