УДК 520.872; 550.311

ОЦЕНКА ПАРАМЕТРОВ РЕЗОНАНСА ЖИДКОГО ЯДРА ЗЕМЛИ НА ОСНОВЕ МНОГОЛЕТНИХ НАБЛЮДЕНИЙ ДЕФОРМАЦИЙ ЛИТОСФЕРЫ

© Милюков В.К., Мясников А.В.

Московский Государственный Университет им. М.В. Ломоносова, Государственный астрономический институт им. П.К. Штернберга (ГАИШ МГУ), г. Москва

Свободная нутация ядра (Free Core Nutation, FCN) обусловленна ретроградным движением внешнего жидкого ядра Земли относительно мантии. Период и добротность свободной нутации определяются упругими свойствами границы внешнего ядра и мантии, а также их электромагнитным взаимодействием. В небесной системе координат период FCN порядка 430 дней, в земной системе отсчета свободная нутация ядра проявляется в виде резонанса жидкого ядра Земли (Free Core Resonance, FCR), частота которого лежит в суточном приливном диапазоне. Наблюдение резонанса жидкого ядра требует очень точных измерений амплитуд и фаз близсуточных приливных волн. В частности, оценки параметров волн K1, P1, PSI1 и PHI1 имеют решающее значение для оценки эффекта резонанса жидкого ядра. Экспериментальное изучение резонанса жидкого ядра в основном связано с накоплением данных сверхроводящих гравиметров и РСДБ. В данной работе эффект FCR исследуется по многолетним прецизионным записям деформации сделанных на двух европейских станциях: Баксан, Россия (лазерный интерферометр деформограф с измерительным плечом 75м [1,2]) и Гран-Сассо, Италия (два перпендикулярных лазерных интерферометра – деформографа, ВА и ВС, с измерительным плечом 90м каждый [4]).

Ключевые слова: деформация, приливные параметры, резонанс жидкого ядра, свободная нутация ядра

Ведение

Свободная нутация ядра (Free Core Nutation, FCN) [25] представляет собой вращательные собственные колебания Земли, возникающие из-за динамического взаимодействия вращающегося внешнего жидкого ядра и вращающейся, упругой эллиптической мантии. Колебания жидкого ядра относительно мантии проявляется в виде добавочного члена к хорошо известным Чандлеровским колебаниям, так как оси вращения мантии и ядра слегка смещены относительно друг друга. В небесной системе

координат значения периода свободной нутации $T_{\rm FNC}$, согласно экспериментальным данным, лежат в диапазоне от 410 до 432 сидерических дней. Оценка добротности определяется значительно хуже, ее величина имеет разброс в несколько порядков. В земной системе отсчета этот эффект проявляется в виде резонанса жидкого ядра Земли (Free Core Resonance, FCR), частота которого может быть выражена как $f_{FCR} = 1 + 1/T_{FCN}$ и находится в суточном приливном диапазоне. В результате этого эффекта искажаются как амплитуды, так и фазы суточных приливных волн, частоты которых близки к $f_{\rm FCR}$ (главным образом, P1, K1, Ψ 1 и Φ 1). Большинство экспериментальных исследований эффекта резонанса жидкого ядра базируются на данных сверхпроводящих гравиметров [7,15,21] и данных РСДБ [6,10,11,17], и дают соответственно следующие оценки: $T_{\rm FNC} = (426,9 \pm 1,2)$ сидерических дней, Q = 16630 ± 3562; и $T_{\rm FNC} = (429,6 \pm 0,6)$ сидерических дней, Q = 16683 ± 884.

Однако лишь немногие исследования основаны на приливных деформационных данных. В частности, в работе [14] анализ основывался на семилетних данных 15метрового лазерного интерферометра на подземной станции Rokko-Takao в Японии. Были получены значения периода FCN, равное 427.5 (±11,1) сидерических суток, и добротности, равное 5000(±2000). В работе [5] анализ был выполнен по восьмилетним данным двух 90-метровых лазерных интерферометрах-деформографах, работающих в подземной обсерватории Gran Sasso, Италия. Получена оценка $T_{FNC} = (429 \pm 10)$ сидерических дней.

Цель данной работы – оценка параметров близсуточного резонанса жидкого ядра Земли (и, соответственно, свободной нутации ядра) по совместному анализу деформационных данных, полученных на деформационных станциях Баксан (Россия) и Гран Сассо (Италия). Специальная предварительная подготовка данных регистрации приливной деформации для трех интерферометров была проведена и подробно изложена в работе [13]. Учет влияния океанической нагрузки и надежная оценка локальных и метеорологических искажений как для Гран-Сассо так и для Баксанской станции позволяют выделить влияния свободного резонанса ядра в суточном приливном диапазоне и выполнить оценку его параметров.

Влияние эффекта FCR на приливные деформации. Суточные гармоники приливных деформаций в азимутальном направлении η могут быть представлены выражением [14, 5].

$$\varepsilon(\eta) = F(\theta) \left\{ \left[h - 2l(1 + \cos^2 \eta) \right] \cos(2\pi f t + \varphi - \psi) - l \frac{\sin 2\eta}{\cos \theta} \sin(2\pi f t + \varphi - \psi) \right\}$$
(1)

где f – частота приливной гармоники; $F(\theta)$ – функция; зависящая от местоположения станции и пропорциональная амплитуде приливного потенциала данной гармоники; θ и ψ - широта и долгота деформационной станции; φ - фаза, зависящая от гармоники и начала отсчета времени; h и l - числа Лява и Шида соответственно.

Поскольку резонанс жидкого ядра Земли возмущает приливы в твердой Земле, числа h и l зависят от частоты f[23]:

$$h = h_0 + h_1 \frac{f - f_0}{f_{FCR} - f}, \quad l = l_0 + l_1 \frac{f - f_0}{f_{FCR} - f},$$
 (2)

где f_0 - частота волны O1 и f_{FCR} – частота FCR. Параметры h_1 и l_1 - константы, определяющие величину эффекта. Если считать, что диссипация приливной энергии происходит за счет неупругих свойств Земли, то числа h_0 , h_1 , l_0 , и l_1 являются комплексными. Наибольшую роль играют "номинальные" значения чисел Лява h_0 = 0.6078 и Шида l_0 = 0.0847, соответствующие модели PREM [8]. Параметры h_1 и l_1 имеют порядок 10⁻⁴ и относятся к небольшим дополнительным смещениям, вызванным

эллиптичностью Земли и силами Кориолиса [12]. Частота f_{FCR} будет также комплексной величиной и следовательно в (2) должна быть заменена выражением

$$f_{FCR} \Rightarrow f_{\rm I} \left(1 + j \frac{1}{2Q} \right), \tag{3}$$

где $f_1 = \text{Re}(f_{FCR}), Q$ – добротность моды резонанса жидкого ядра; *j* - мнимая единица. Мы можем переписать уравнение (1) в виде:

$$\varepsilon(\eta) = \{ \mathcal{C}(f) \cos(2\pi f t + \varphi - \psi) + \mathcal{D}(f) \sin(2\pi f t + \varphi - \psi) \} F(\theta)$$
(4)

где:

$$C(f) = a_0 + f_2 \left\{ a_1(f_1 - f) + b_1 \frac{f_1}{2Q} \right\};$$
(5)

$$D(f) = b_0 + f_2 \left\{ b_1(f_1 - f) - a_1 \frac{f_1}{2Q} \right\};$$
(6)

$$f_2 = (f - f_0) / \{ (f_1 - f)^2 + (f_1/2Q)^2 \}$$
(7)

Коэффициенты a_0, a_1, b_0, b_1 могут быть представлены в виде:

$$a_0 \equiv \operatorname{Re}\{h_0 - 2l_0(1 + \cos^2 \eta)\} + \operatorname{Im}\{l_0 \sin 2\eta / \cos \theta\};$$
(8)

$$a_1 \equiv \operatorname{Re}\{h_1 - 2l_1(1 + \cos^2 \eta)\} + \operatorname{Im}\{l_1 \sin 2\eta / \cos \theta\};$$
(9)

$$b_0 \equiv \operatorname{Im}\{h_0 - 2l_0(1 + \cos^2 \eta)\} - \operatorname{Re}\{l_0 \sin 2\eta / \cos \theta\};$$
(10)

$$b_1 \equiv \operatorname{Im}\{h_1 - 2l_1(1 + \cos^2 \eta)\} - \operatorname{Re}\{l_1 \sin 2\eta / \cos \theta\}.$$
 (11)

Оценка параметров резонанса жидкого ядра земли. Для оценки параметров FCR были использованы 8 суточных приливных волн (Q1, O1, P1, K1, Ψ1, Φ1, J1, OO1). Совместный анализ данных, полученных на Баксанском лазерном интерферометредеформографе и двух интерферометрах-деформографах Гран Сассо (BA и BC) выполнялся методом сравнения измеренных значений приливных параметров с их теоретическими значениями.

Если невязки (разности между экспериментальными данными и теоретическими значениями) распределены по гауссовскому (нормальному) закону, подход максимального правдоподобия приводит к методу наименьших квадратов (\pounds^2). Но, если невязки подчинены двустороннему экспоненциальному распределению (распределению Лапласа), подход максимального правдоподобия приводит к минимизации по методу наименьших модулей (\pounds^1) [3, 16].

Поэтому в данной работе оценка параметров FCR проводилась по минимизации φy нкции ${\tt t}^1$

$$E^{1} = \sum_{m=1}^{3} \sum_{n=1}^{16} \left| \frac{x_{n}^{(m)} - z_{n}^{(m)}(a)}{\sigma_{n}^{(m)}} \right|,$$
(12)

где индекс m = 1, 2, 3 соответствует трем интерферометрам, по данным которых ищется совместное решение; $x_n^{(m)}$ (n=1....16) - амплитуды синусоидальных и косинусоидальных членов в каждом наборе восьми основных суточных приливных волн; $z_n^{(m)}(a)$ – модельные (теоретические) значения $x_n^{(m)}$, заданные набором модельных параметров **a**, часть которых подлежит определению в результате минимизации \pounds^1 ;

 $\sigma_n^{(m)}$ – ошибки определения $x_n^{(m)}$.

гармоник [18].

В качестве измеренных значений $x_n^{(m)}$ были использованы амплитуды синусоидальных и косинусоидальных членов наблюденных приливных волн, полученные как выходные параметры приливной программы VAV03 [22]. Программа VAV03, как и приливная программа ETERNA [24], используется для анализа любого рода приливных данных. Основной алгоритм программы заключается в преобразовании данных из временной области в частотно-временную. После преобразования параметры приливов оцениваются методом наименьших квадратов. В результате для каждой приливной волны определяются амплитудный фактор $\delta_{\omega} = \frac{H_{\omega}}{h_{\omega}}$ и фазовая задержка $\alpha_{\omega} = \Phi_{\omega} - \phi_{\omega}$, где H_{ω} и Φ_{ω} - известные теоретические значения амплитуд и фаз, а h_{ω} и ϕ_{ω} наблюденные амплитуды и фазы. Теоретический прилив представляет композицию бесконечного числа гармонических колебаний. В программах VAV03 и ETERNA используется разложение приливного потенциала, содержащее 1200 приливных

С помощью VAV03 были обработаны предварительно обеленные деформационные данные каждого интерферометра. Океаническая нагрузка, вычисленная по океанической модели TPXO7-atlas2011, была удалена из полученных значений амплитуд и фаз приливных волн Q1, O1, P1 и K1, вычисленных с использованием модели Земли CONTAP [13]. Однако поправки для волн Ψ1, Φ1, J1 и ОО1 не включены в океанические модели, поэтому поправки для этих волн были вычислены следующим образом. Так как частоты $\Psi 1$ и $\Phi 1$, близки к частоте волны K1 и близки к частоте FCR, для их оценки была применена линейная экстраполяция между волнами P1 и K1. Волны J1 и ОО1 далеки от частоты резонанса, поэтому мы использовали поворот фаз этих приливных волн, аналогично тем, которые были получены для Q1, O1, P1 и K1. В целом повороты фаз для этих волн близки друг к другу (1° против часовой стрелки, 4° против часовой стрелки, и 2° по часовой стрелке, для Баксана, ВА и ВС соответственно).

В работе [13] были получены оценки возмущений деформаций, обусловленных локальными эффектами (локальная топография, эффекты полости и т.д.). Локальные эффекты деформации могут быть описаны для каждого интерферометра с помощью трех коэффициентов кросс-каплинга α , β , γ , и деформация может быть представлена в виде (уравнение (3) в [13].

$$\varepsilon = \alpha \varepsilon(\eta) + \beta \varepsilon(\eta - 90^{\circ}) - \frac{1}{2}\gamma[\varepsilon(\eta - 45^{\circ}) - \varepsilon(\eta + 45^{\circ})]$$
(13)

где *η* - азимут интерферометра, равный 29.38°, 24° и 66° для Баксана, ВА и ВС соответственно. В цитируемой работе также получены значения коэффициентов кросс-каплинга для каждого интерферометра.

Подставляя уравнения (1) – (11) в (13) в конечном итоге для каждого интерферометра получим следующие значения коэффициентов

$$a_0 = \operatorname{Re}\{(\alpha + \beta)(h_0 - 3l_0) - l_0[(\alpha - \beta)\cos(2\eta) + \gamma\sin(2\eta)]\}+;$$

$$\operatorname{Im}\{l_0[(\alpha - \beta)\sin(2\eta) - \gamma\cos(2\eta)]/\cos\theta\}$$
(14)

$$a_{1} = \operatorname{Re}\{(\alpha + \beta)(h_{1} - 3l_{1}) - l_{1}[(\alpha - \beta)\cos(2\eta) + \gamma\sin(2\eta)]\} + ;$$
(15)

$$\operatorname{Im}\{l_{1}[(\alpha - \beta)\sin(2\eta) - \gamma\cos(2\eta)]/\cos\theta\}$$

$$b_0 = \operatorname{Im}\{(\alpha + \beta)(n_0 - s\ell_0) - \ell_0[(\alpha - \beta)\cos(2\eta) + \gamma\sin(2\eta)]\}^-;$$

$$\operatorname{Re}\{l_0[(\alpha - \beta)\sin(2\eta) - \gamma\cos(2\eta)]/\cos\theta\}$$
(16)

$$b_{1} = \operatorname{Im}\{(\alpha + \beta)(h_{1} - 3l_{1}) - l_{1}[(\alpha - \beta)\cos(2\eta) + \gamma\sin(2\eta)]\}^{-}.$$
(17)

$$\operatorname{Re}\{l_1[(\alpha-\beta)\sin(2\eta)-\gamma\cos(2\eta)]/\cos\theta\}$$

Теоретические (модельные) значения приливных параметров были вычислены по формулам (4) – (7) и (14) – (17).

Мы рассматриваем $1/T_{FNC}$ и logQ в качестве неизвестных параметров, которые должны быть определены методом наименьших модулей (12). Что касается комплексных чисел Лява и Шида, то Re($h_0 - 3l_0$), Re($h_1 - 3l_1$), Re(l_0) также определяются из минимизации \pounds^1 . Но Re(l_1), Im($h_1 - 3l_1$), Im($h_0 - 3l_0$), Im(l_0) и Im(l_1) могут считаться как неизвестными, так и принимать фиксированные значения согласно IERS Conventions 2003 [12]. Минимизации функция \pounds^1 осуществлялась с использованием программы Adaptive Simulated Annealing (ASA) [9,19,20].

Результаты. Оценка приливных параметров по предварительно обеленным деформационным записям лазерного интерферометра на станции Баксан и двух лазерных интерферометров на станции Гран Сассо была сделана с помощью программы VAV03. Баксанские данные были скорректированы на влияние температуры штольни, где установлен прибор. В полученные значения приливных параметров бы введены поправки за океаническую нагрузку.

На Рис. 1 приведено сравнение измеренных приливных параметров для трех интерферометров в суточном диапазоне, исправленных на океаническую нагрузку, с расчетными кривыми. Значения амплитуд нормированы на соответствующие значения приливов модели Земли SNRE. Приливные параметры представлены в виде косинусоидальной (верхняя панель) и сунусоидальной (нижняя панель) гармоник. В последнем случае расхождения между значениями Ф1 и расчетной кривой превышает ошибку определения амплитуды Ф1 по VAV03 для всех трех интерферометров. Для Баксана это расхождение превышает ошибку также для волны J1. Приливные параметры волны Р1 для Баксана сильно искажены влиянием температуры, а значения параметров волны Ψ1 находятся ниже уровня шума, поэтому в оценке параметров FCR они не использовались.

Оценка параметров резонанса жидкого ядра проводилась минимизацией функции \mathfrak{t}^1 , в которой в качестве измеренных величин $x_n^{(m)}$ были использованы амплитуды синусоидальных и косинусоидальных членов приливных волн, вычисленные по значениям амплитуд и фаз этих волн, определенных VAV03. Оценки параметров FCR были получены в двух вариантах. В первом случае параметры $1/T_{\rm FNC}$ и logO, а также все параметры с комплексными числами Лява и Шида, считались неизвестными. Во втором случае неизвестными считались только пять параметров: $1/T_{FNC}$, logQ, Re(h_0 - $3l_0$), Re(h_1 - $3l_{i}$) и Re(l_{0}), остальные пять параметров комплексных чисел Лява и Шида были фиксированы согласно IERS Conventions 2003. Для каждого варианта с помощью программы ASA определялись наиболее вероятные параметры FCR. На Рис. 2 (верхняя панель) представлено распределение функции плотности вероятности для периода свободной нутации ядра T_{FCN}. В первом варианте решения (все параметры считаются неизвестными) распределение ФПВ имеет максимум для значения 428,5 сидерических дней; во втором варианте (5 параметров неизвестны) распределение ФПВ достигает максимума в области 426,5 сидерических дней. В первом случае наш результат хорошо согласуется с оценками, полученными из анализа данных РСДБ, во втором с оценками по гравиметрическим данным [17].

Кумулятивные распределения (Рис 2, нижняя панель) показывают, что на уровне достоверности 90% значение T_{FCN} не превосходит 436,8 сидерических дней в случае, когда все параметры считались неизвестными; и не превосходит 440,2 сидерических дней при фиксированных параметрах $\text{Re}(l_1)$, $\text{Im}(h_1 - 3l_1)$, $\text{Im}(h_0 - 3l_0)$, $\text{Im}(l_0)$ и $\text{Im}(l_1)$.

Значения Q, полученные в результате решения с помощью алгоритма ASA, как правило, большие (> 10^6). Функция плотности вероятности Q, полученная с использованием NAB уменьшается, начиная примерно с 300, когда все параметры считались неизвестными, и имеет максимум около 18000, при фиксированных $\text{Re}(l_l)$, $\text{Im}(h_l - 3l_l)$, $\text{Im}(h_0 - 3l_0)$, $\text{Im}(l_0)$ и $\text{Im}(l_l)$.

Согласно выражениям (2), константы h_l и l_l определяют величину эффекта FCR. Поэтому величина резонанса определяется главным образом параметром $\text{Re}(h_l - 3l_l)$, который считается неизвестным во всех решениях (этот параметр входит в выражение для коэффициента a_l (14) и соответственно в выражение для коэффициента C (5)).

Рис. 1. Амплитуды приливных волн, нормированные на соответствующие значения приливов модели Земли SNRE для Баксана, ВА и ВС, полученные из анализа предварительно обеленных записей деформаций программой VAV03 (квадраты), и расчетные модельные значения амплитуд (сплошные кривые). Измеренные амплитуды приведены относительно модельных значений синфазно ("cosine", верхняя панель) и сдвинутые на 90⁰ ("sine", нижняя панель). Вертикальные линии – удвоенные СКО амплитуд по VAV03.

Рис. 2. Распределение функции плотности вероятности (верхняя панель) кумулятивная И вероятность (нижняя панель) для Т_{FCN}. Сплошные линии – все параметры в решении считались неизвестными; пунктирные линии – пять параметров в решении были фиксированы. Функции плотности вероятности имеют максимумы соответственно для 428 и 426 сидерических дней. Горизонтальные отрезки результаты, полученные по гравиметрическим И РСДБ данным [17]

Выводы. Исследован эффект влияния резонанса жидкого ядра Земли на приливные деформации на основе долговременных деформационных данных, полученных на лазерных интерферометрах на станциях Баксан (Россия) и Гран Сассо (Италия), и сделана оценка периода T_{FCN} и добротности Q свободной нутации ядра, а также параметра $Re(h_l - 3l_l)$, определяющего величину эффекта FCR. Небольшой вклад океанической нагрузки и надежная оценка локальных искажений как на станции Баксан, так и на станции Гран Сассо делают возможным выявить и оценить указанные эффекты. Для совместного анализа данных были использованы шестилетняя запись деформаций на Баксанском лазерном интерферометре-деформографе и восьмилетняя запись деформаций на двух лазерных интерферометрах-деформографах в Гран Сассо. Приливный анализ был выполнен программным пакетом VAV03. Наблюденные приливных деформаций хорошо согласуются с теоретическими амплитуды (расчетными) амплитудами для большинства гармоник в суточном и полусуточном диапазонах без учета эффекта FCR. Однако расхождения между измеренными и расчетными значениями амплитуд становятся значительными в частотной области $f\approx 1/сидерический день, особенно, для амплитуд волн К1 and <math>\Psi 1$. Это расхождение в основном обусловлено влиянием эффекта FCR.

Оценка параметров свободной нутации ядра получена минимизацией совместной для всех интерферометров функции \pounds^1 модулей разности измеренных (скорректированных с учетом океанической нагрузки) и расчетных (скорректированных с учетом локальных искажений деформаций) значений параметров восьми суточных приливных волн Q1, O1, P1, K1, Ψ 1, Φ 1, J1 и OO1. Минимизация функции \pounds^1 проводилась в двух вариантах. В первом варианте неизвестными считались восемь параметров: $T_{\rm FNC}$ и Q⁻¹, а также восемь параметров, определяемых различной комбинацией комплексных чисел Лява и Шида. Во втором варианте неизвестными считались только пять параметров, пять параметров комплексных чисел Лява и Шида были фиксированы согласно IERS Conventions 2003.

В первом варианте получена оценка периода свободной нутации $T_{FNC} = (428,5 \pm 8,3)$ сидерических дней на уровне достоверности 90%, во втором варианте $T_{FNC} = (426,5 \pm 13,7)$ сидерических дней на том же уровне достоверности. В первом случае наш результат хорошо согласуется с оценками, полученными из анализа данных РСДБ: $T_{FNC} = (429,6 \pm 0,6)$ сидерических дней; во втором с оценками по гравиметрическим данным: $T_{FNC} = (426,9 \pm 1,2)$ сидерических дней [17]. Наш результат также подтверждает два предыдущих результата, полученных по деформационным данным (таблица 1).

Таблица 1

	Т _{FNC} (сидерические сутки)	Публикация	
1	427.5 ±11,1	[Mukai et al., 2004]	
2	429 ± 10	[Amoruso et al., 2012]	
3	$428,5 \pm 8,3$	Настоящая работа	

Добротность определяется только по порядку величины. Тем не менее, формальная оценка добротности, полученная из решения задачи минимизации целевой функции, в которой определялись пять параметров, дает значение Q≈18000, что согласуется с результатами [17], Q≈16700. Стоит признать, что в отличии от сверхпроводящих гравиметров и РСДБ, деформационные данные, полученные с помощью лазерных интерферометров-деформографов не позволяют получить достоверную оценку добротности.

Работа выполнена при поддержке гранта РФФИ №16-05-00122.

Литература

1. Лазерный интерферометр–деформограф для мониторинга движений земной коры / В.К. Милюков, Б.С. Клячко, А.В. Мясников и др. // Приборы и техника эксперимента, 2005. № 6. С. 87-103.

- 2. Наблюдения приливных деформаций земной коры в Приэльбрусье / В.К. Милюков, А.В. Копаев, А.В. Лагуткина и др. // Физика Земли, 2007. № 11. С. 21-29.
- Amoruso, A., Crescentini, L. Inversion of levelling data: how important is error treatment? // Geophys. J. Int. 2007. V. 171. P. 1352-1362.
- Amoruso, A., Crescentini, L. The geodetic laser interferometers at Gran Sasso, Italy: recent modifications and correction for local effects. // J. Geodyn. 2009. V. 48. P. 120-125. doi:10.1016/j.jog.2009.09.025.
- Amoruso, A., Botta, V., Crescentini, L. Free Core Resonance parameters from strain data: sensitivity analysis and results from the Gran Sasso (Italy) extensioneters. // Geophys. J. Int. 2012. V. 189. P. 923-936.
- Defraigne, P., Dehant, V., Hinderer, J. Stacking gravity tide measurements and nutation observations in order to determine the complex eigenfrequency of the nearly diurnal freewobble // J. Geophys. Res. 1994. V. 99(B5). P. 9203–9213.
- Ducarme, B., Rosat, S., Vandercoilden, L., Xu, J.Q., Sun, H.P. European tidal gravity observations: comparison with Earth Tides models and estimation of the Free Core Nutation (FCN) parameters. In: Observing Our Changing Earth. International Association of Geodesy Symposia. Ed. Sideris, M.G. Springer-Verlag. Berlin. 2009. V. 133, P. 523–532. doi:10.1007/978-3-540-85426-5
- Dziewonski A.M., Anderson D.L. Preliminary reference Earth model // Phys. Earth Plan. Int. 1981. V. 25. P. 297-356.
- Ingber, L. Simulated Annealing: Practice Versus Theory // J. of Mathematical and Computer Modeling. 1993. V. 18. P. 29-57.
- Koot, L., Dumberry, M., Rivoldini, A., de Viron, O., Dehant, V. Constraints on the coupling at the core-mantle and inner core boundaries inferred from nutation observations// Geophys. J. Int. 2010. V. 182. P. 1279–1294. doi:10.1111/j.1365-246X.2010.04711.x
- 11. Lambert, S.B. & Dehant, V. The Earth's core parameters as seen by the VLBI // Astron. Astrophys. 2007. V. 469. P. 777–781.
- McCarthy, D. D., Petit, G. IERS Conventions (2003). IERS Technical Note 32. Verlag des Bundesamts f
 ür Kartographie und Geodasie. Frankfurt am Main. 2004. 127p.
- Milyukov V. K., Amoruso A., Crescentini L., Mironov A. P., Myasnikov A. V., Lagutkina A. V. Oceanic Loading and Local Distortions at the Baksan, Russia, and Gran Sasso, Italy, Strain Stations //Izvestiya, Physics of the Solid Earth. 2018. V. 54 (2). PP. 336–348.
- 14. Mukai, A., Takemoto, S., Yamamoto, T. Fluid core resonance revealed from a laser extensioneter at the Rokko-Takao station, Kobe // Japan. Geophys. J. Int. 2004. V. 156. P. 22-28.
- Neuberg, J., Hinderer, J., Zürn,W. Stacking gravity tide observations in Central Europe for the retrieval of the complex eigenfrequency of the nearly diurnal free wobble // Geophys. J. R. Astr. Soc. 1987. V. 91. P. 853–868.
- Press, W. H., Teukolsky, S. A., Vetterling, W. T., Flannery, B. P. Numerical recipes in C: The art of scientific computing. 2-nd Ed. Cambridge University Press. Cambridge- 1992.
- Rosat, S., Lambert, S. B., Free core nutation resonance parameters from VLBI and super-conducting gravimeter data // Astron. Astrophys. 2009. V. 503. P. 287-291.
- Tamura Y. A harmonic development of the tide-generating potential // Bulletin d'Information Marees Terrestres, Bruxelles. 1987. N 99. P. 6813-6855.
- Sambridge, M. Geophysical inversion with a neighbourhood algorithm-I. Searching a parameter space // Geophys. J. Int. 1999a. V. 138. P. 479-494.
- Sambridge, M. Geophysical inversion with a neighbourhood algorithm-II. Appraising the ensemble. // Geophys. J. Int. 1999b. V. 138. P. 727-746.
- Sato, T., Tamura, Y., Matsumoto, K., Imanishi, Y. & Mac Queen, H., Parameters of the fluid core resonance inferred from superconducting gravimeter data // J. Geodyn. 2004. V. 38. P. 375–389.
- Venedikov, A. P., Arnoso, J., Vieira, R., VAV: a program for tidal data processing. // Computers and Geosciences. 2003. V. 29. P. 487-502.
- Wahr, J.M., Sasao, T. A diurnal resonance in the ocean tide and in the Earth's load response due to the resonant free 'core nutation'. // Geophys. J. R. Astr. Soc. 1981. V. 64. P. 747-765.
- Wenzel H.-G, The nanogal software: Earth tide data processing package Eterna 3.30 // Bulletin d'Information Marees Terrestres, Bruxelles. 1996. V. 124. P 9425-9439.
- Wilhelm, H., Zürn, W., Wenzel, H. G. (Eds.). Tidal Phenomena. Lecture Notes in Earth Sciences, V. 66, Springer-Verlag, Berlin Heidelberg. 1997. 397 p.