УДК: 551.324(23)

МЕХАНИЗМ ФОРМИРОВАНИЯ ЗАГРЯЗНЕНИЙ В ГЛЯЦИАЛЬНОЙ ЗОНЕ БОЛЬШОГО КАВКАЗА С УЧЁТОМ СУХОГО ВЫПАДЕНИЯ АЭРОЗОЛЕЙ ИЗ АТМОСФЕРЫ

© Керимов А.М., Долова М.Л., Курашева О.А.

Высокогорный геофизический институт, г. Нальчик

В работе определены концентрации микрочастиц выпадающих на поверхность ледника в дни без осадков (сухое выпадение) в районе Эльбруса на разных абсолютных высотах: от дна долины до уровня 4000 м. Определение содержания водонерастворимых частиц в пробах снега производилось с использованием электронного и оптического микроскопов. Результаты выявили чёткое вертикальное распределение микрочастиц (МЧ) по размерам и массе, а также их изменение в летне-осенний период.

Содержание тяжёлых металлов (TM) в снежной толще определялось эмиссионным спектральным анализом.

Ключевые слова: аэрозоли, ледник, концентрация примесей, снежная толща, атмосферные осадки, сухое выпадение, гигантские и сверхгигантские частицы, турбулентность, восходящие потоки.

Введение

Ледники как естественные аккумуляторы атмосферных осадков позволяют судить о состоянии загрязнения атмосферы и о тенденциях ее изменения на протяжении длительного времени. Загрязнения в ледниках накапливаются в результате вымывания осадками и «сухого» выпадения аэрозолей. Проведенный нами анализ проб ледников на

Кавказе на содержание микроэлементов, а также спектрального распределения по размерам и массе аэрозольных частиц дал возможность выделить годовые и сезонные слои, показать ход изменения примесей за ряд лет. Кроме того, было обнаружено, что в сезонных, особенно в зимних слоях выделяются еще слои, которые, очевидно, формируются в результате мощных снегопадов и их метаморфизма [2, 3].

По нашему мнению, значительный интерес представляет механизм образования сезонных слоев и исследование переноса и накопления в них примесей. Эти исследования, вероятно, имеют самостоятельную ценность, если учесть, что Кавказ находится в поясе западно-восточного переноса, а, как известно, горный рельеф играет большую роль в процессе самоочищения атмосферы. Поэтому следует оценить ту часть «сухого» выпадения, которая является результатом переноса аэрозолей из западных районов и вклад местных источников загрязнений (выветривание горных пород, камнепады, пыльные бури, лавины и т.д.). Также необходимо выяснить вклад различных источников в общее содержание примесей в процессе их формирования: вымывание осадками, «сухое» выпадение и перераспределение примесей в результате испарения образовавшегося снежного покрова. По-видимому, такие оценки можно сделать, по крайней мере, для снега зимнего накопления, когда склоны гор заснежены и нет мощных конвективных потоков, поднимающих массу аэрозольных частиц местного происхождения на большие высоты.

Однако, для решения такой сложной задачи нужен комплексный подход. Необходимо:

- 1. Проводить систематические наблюдения за формированием сезонного снежного покрова на различных высотах и его метаморфизмом, так как изменение свойств снежного слоя сопровождается перераспределением примесей в нем.
- 2. Исследовать содержание примесей в сезонных слоях ледников (тонкую структуру) и свежевыпавших осадках на высоте 4000 м н.у.м. и выше, прослеживая происхождение воздушных масс, из которых выпали осадки.
- 3. Брать пробы «сухого» выпадения на горизонтальные подложки и аэрозольные пробы из воздуха на различных высотах у поверхности земли [7].

Предварительный анализ экспериментальных данных показывает, что содержание примесей внутри слоя и на его поверхности сильно отличаются; очевидно, существенный вклад вносит «сухое» выпадение. Также следует отметить, что количество примесей в «старом» снеге больше, чем в свежевыпавшем, вероятно, вследствие значительного испарения снега, в результате чего наблюдается перераспределение примесей в снежном покрове. К тому же содержание и характер примесей определяются типом воздушных масс, из которых выпадают осадки и осаждаются аэрозоли.

Как уже было сказано, отбор проб производится на высоте 4000 м н. у. м. и выше, так как в свободной атмосфере концентрация аэрозолей на этом уровне приближается к глобальному фону и почти не зависит от подстилающей поверхности (в мало ветреную антициклоническую погоду). Но высоко в горах, даже при устойчивой стратификации атмосферы и небольшом ветре, происходит достаточно интенсивное перемешивание атмосферы в результате конвекции, горно-долинной циркуляции и турбулентного обмена. Об этом свидетельствуют постоянно возникающие кучевые облака и очень медленное уменьшение концентрации аэрозоля (по данным самолетных зондирований). Поэтому в высокогорных районах высота оказывает значительное влияние на концентрацию и спектральное распределение аэрозолей.

После выпадения осадков концентрация примесей в них может значительно возрастать. Основная роль в этом процессе принадлежит второму источнику накопления примесей в ледниках — сухому выпадению аэрозолей из атмосферы. В дни без осадков существуют два механизма выведения аэрозолей из атмосферы: диффузионное и гравитационное осаждение, которые, как правило, действуют одновременно. Различия в интенсивности удаления аэрозолей из атмосферы в значительной степени зависят от дисперсности аэрозолей.

Материалы и методы

Оценить сухое выпадение аэрозолей можно следующим образом. После снегопада в течение нескольких дней без осадков отбираются пробы в неглубоком шурфе из средней части слоя, отложенного во время последнего снегопада, и с поверхности снега (в тонком слое 1-2 см). Поскольку поверхность снежного покрова служит естественным планшетом - накопителем частиц сухого выпадения, то сравнение концентрации примесей в пробах позволяет оценить вклад этого процесса. Концентрация микрочастиц на поверхности оказывается в 3 – 4 раза, а иногда и на порядок выше, чем в середине слоя. Чем дольше промежуток времени между двумя снегопадами, тем больше накопление аэрозолей за счет сухого выпадения. Наблюдения в шурфах, вскрывающих целиком всю толщу сезонного снега, также показали, что средняя часть каждого слоя, отложенного во время отдельного снегопада, загрязнена меньше, чем его поверхность. Это относится как к весовой и счетной концентрации, так и к среднему кубическому диаметру микрочастиц. Так, в шурфе на высоте 4000 м (фирновое плато в районе «Приюта Одиннадцати») в пробах с поверхности слоев снега, отложенных тремя снегопадами, масса частиц составила в среднем 0,017 г/л, а в середине тех же слоев 0,003 г/л. Соответственно число частиц в этих пробах составляет $35*10^7$ л⁻¹ и $15*10^7$ л⁻¹, а среднекубический диаметр 3,6 мкм и 2,8 мкм. Встречались слои, где загрязненность поверхности была на порядок больше, чем в середине слоя [3, 4].

В дни без осадков аэрозоли выводятся из атмосферы с помощью трех механизмов: седиментации, диффузионного и инерционного осаждения на поверхность объекта. Как правило, почти во всех случаях все три механизма действуют одновременно. Однако механизмы, обеспечивающие удаление аэрозолей из атмосферы, могут сильно отличаться в зависимости от дисперсности аэрозолей.

Результаты и их обсуждение

В таблице 1 представлены результаты исследований загрязненности снежной толщи в районе Приэльбрусья: а) вблизи пос. Терскол – 2150 м; б) пик Чегет – 3000 м; в) фирновое плато на южном склоне Эльбруса в районе «Приюта Одиннадцати» – 4000 м. Определялись следующие параметры: m – весовая и n- счетная концентрации, d_3 – среднекубический диаметр МЧ нерастворимой фракции примесей.

Из таблицы 1 видно, что весовая и счетная концентрации и среднекубический диаметр МЧ в пробах с поверхности больше, чем в средней части слоя. Причем такое соотношение выполняется для всех высот, на которых производился отбор проб. Различие весовых концентраций МЧ, содержащихся в пробах с поверхности и средней части слоев, меняется в широких пределах. Встречаются слои, загрязненность поверхности которых на полпорядка выше загрязненности середины слоя (3-й слой вблизи п. Терскол) и даже на порядок (2-й слой на высоте 4000 м). Для других же слоев (1-й слой на уровне 3000 м) содержание МЧ на поверхности не намного больше их концентрации в середине слоя. Такое неравномерное распределение примесей в снежной толще объясняется длительностью периодов между двумя последовательными снегопадами. В частности, максимальная концентрация примесей в 3-ем слое на уровне п. Терскол объясняется большим интервалом времени между двумя снегопадами (в течение месяца не было существенных осадков) и значительной антропогенной загрязненностью дна долины.

Анализ спектрального распределения частиц по размерам в пробах снега (табл.2) показывает, что максимум в распределении соответствует частицам с диаметром 0,5–4,0 мкм. Частицы с такими размерами составляют 90–95 %.

Частиц с диаметром более 4 мкм на порядок меньше, а еще более крупных частиц ($d>10\div12$ мкм) — на два порядка меньше. Это связано с тем, что наиболее крупные частицы с d>10 мкм находятся в атмосфере непродолжительное время и удаляются вблизи источников генерации за счет седиментации. Счетная концентрация частиц с d>10 мкм в пробах свежевыпавшего снега составляет около 0,5 % от всех частиц, тогда как их весовая концентрация меняется в более широких пределах: 5–50 %.

Спектральное распределение микрочастиц в зимних слоях ледников имеет такой же порядок. Среднекубические диаметры частиц в свежеотложившихся осадках на высотах 2100, 3000 и 4000 м меняются в интервале 2,92 – 4,64; 3,07 – 4,02 и 2,38 – 3,80 мкм соответственно, а на ледниках Адырсу и Уллукол – в интервале 2,80 – 4,53 и 2,50 –2,90 м соответственно [3]. Из приведенных данных следует, что в свежевыпавшем снеге, а также сезонном снежном покрове и зимних слоях ледников спектральное распределение частиц по размерам существенно не отличается. Имеющиеся отличия в основном объясняются высотным и региональным характером распределения частиц в атмосфере. Это еще одно подтверждение нашего предположения о том, что укрупнения частиц за счет инфильтрации талых вод в районах, где проводился пробоотбор, не происходит, по крайней мере, для зимних слоев [5]. Сравнение загрязненности поверхности и середины слоя, а также соответствие спектрального распределения МЧ в слоях ледников и сезонном снежном покрове дает возможность сделать вывод о том, что существенный вклад в трансформацию примесей в снежном покрове в процессе его перехода в лед вносит сухое выпадение.

Таблица 1 Весовая и счетная концентрации, среднекубический диаметр микрочастиц по вертикальным профилям шурфов на разных высотах

Параметры загрязнен- ности	Выпадающий снег	Поверхность 2 слоя	Середина 2 слоя	Поверхность 3 слоя	Середина 3 слоя	4 слой		
		21	00м			•		
m,гл ⁻¹	0,022	0,087	0,061	0,157	0,029	0,033		
$n,10^7, \pi^{-1}$	34,43	110,06	92,06	182,59	55,29	124,67		
d ₃ , мкм	3,96	4,10	3,98	4,64	3,66	2,92		
Параметры загрязнен- ности	Поверхность 1 слоя	Середина 1 слоя	2 слой	3 слой	4 слой	5 слой		
3000м m,гл ⁻¹ 0,006 0,005 0,031 0,018 0,011 0,013								
n,10 ⁷ , л ⁻¹	8,79	31,54	77,49	55,31	28,98	20,04		
d ₃ , мкм	4,02	3,07	3,36	3,07	3,27	3,5		
	l l		l			ı		
Параметры загрязнен- ности	Поверхность 1 слоя	Середина 1 слоя	Поверхность 2 слой	Середина 2 слоя	Поверх- ность 3 слой	Середина 3 слой		
4000 м								
т,гл-1	0,013	0,004	0,024	0,002	0,014	0,004		
n,10 ⁷ , л ⁻¹	39,54	28,80	39,87	10,14	25,55	6,60		
d ₃ , мкм	3,18	2,35	3,8	2,4	3,78	3,68		

Таблица 2 Спектральное распределение частиц по размерам и массе на разных высотах

Н, м	0,5 <d 4,mkm<="" th="" ≤=""><th colspan="2">4 < d ≤ 10, mkm</th><th colspan="2">$10 < d \le 20$, мкм</th><th colspan="2">d > 20, мкм</th></d>		4 < d ≤ 10, mkm		$10 < d \le 20$, мкм		d > 20, мкм	
	m,%	n,%	m,%	n,%	m,%	n,%	m,%	n,%
2100	25,45	89,77	34,33	9,56	17,7 8	0,57	22,44	0,06
3000	26,64	93,64	35,88	5,39	27,9	0,55	9,58	0,25
4000	37,35	95,26	34,88	4,74	26,2 7	0,48	-	-
5000	41,53	96,31	33,69	3,51	24,7 8	0,18	-	-

Была сделана попытка оценить растворимую часть примесей. Для этого определялось содержание микроэлементов в пробе до фильтрации и во взвесях. Анализ показывает, что для Cr, Ni, Ag концентрации этих элементов во взвесях и пробах, которые обрабатывались до фильтрации, сравнимы, для некоторых элементов разброс составляет 30 – 40%. Концентрация Мп во взвесях в три–пять раз меньше, чем в пробе ледниковой воды. Это говорит о том, что соединения, в которых встречается Мп, в основном растворимы в воде, тогда как соединения Cr, Ni, Ag слабо растворимы [1].

Кроме того, исследования полного спектра аэрозолей показали, что гигантские (d>1 мкм) и сверхгигантские (d>30 мкм) частицы, хотя и вносят незначительный вклад в общую концентрацию аэрозоля, но оказывают существенное влияние на функцию распределения частиц по массе. Поскольку эти частицы вносят значительный вклад в массу аэрозоля при сухом выпадении, то при исследовании основное внимание уделялось этой части спектра [3].

В зимний период перенос в верхние слои тропосферы таких частиц затруднен из-за наличия приземных инверсионных слоев и заснеженности подстилающей поверхности. В то же время гигантские и сверхгигантские частицы вносят значительный вклад в распределение масс, а, следовательно, в сухое выпадение. Вышесказанное хорошо иллюстрируется в таблице 3, где приведены средние значения концентрации и масс за отдельные месяцы осенне-летнего периода, а также их минимальные и максимальные значения за те же сроки.

Таблица 3 Минимальные, средние и максимальные концентрации за летне – осенний период

		n см ⁻³		m 10 ⁻¹² г см			
месяц	ⁿ min	$\frac{-}{n}$	ⁿ max	^m min	\overline{m}	^m max	
июль	130	210	270	0,9	34	90	
август	80	202	310	1,4	27	92	
сентябрь	85	105	250	0,5	6	23	
октябрь	80	111	210	0,2	0,9	5	

Из таблицы 3 видно, что концентрация в осенний период по сравнению с летом уменьшается всего в два раза, в то время как масса частиц — почти в 40 раз. В различные дни концентрация частиц также меняется значительно меньше, чем их масса, максимальное значение которой достигает двух порядков величины. Таким образом, из приведенных выше результатов следует, что масса крупных и гигантских частиц, являющихся основной компонентой сухого выпадения, в летний период почти на полтора порядка выше, чем осенью.

Сравнение спектров частиц в свежевыпавших осадках и воздухе на высотах 3000 – 4000 м и в ледниковых слоях свидетельствует о том, что основная причина

расхождения массы микропримесей в сезонных слоях ледников с массой, принесенной осадками и сухими выпадениями, обусловлена самыми крупными аэрозольными частицами с диаметром до 20 мкм. Частицы таких размеров являются в основном продуктами дробления горных пород.

Известно [6], что различные фракции аэрозоля тесно связаны с их химическим составом. Средне- и грубодисперсный аэрозоль в основном состоит из вещества, характерного для частичек почвы. Они представляют такие элементы, как алюминий, кремний, магний, марганец, никель, титан, железо. С учетом этого была исследована связь концентрации водонерастворимого аэрозоля, вымытого из облаков и подоблачного слоя, с концентрацией тяжелых металлов (ТМ). Корреляция между ТМ и концентрацией водонерастворимых аэрозолей по спектру их размеров является нелинейной. Уравнение регрессии можно выразить через ортогональные полиномы Чебышева до четвертого порядка. Оно имеет вид:

$$Y = C_0 P_0(x) + C_1 P_2(x) + C_2 P_2(x) + \dots + C_3 P_3(x) + C_4 P_4(x)$$
 (1)

где Y — концентрация TM, $P_i(x)$, i=0, 1, 2, 3, 4 — полиномы Чебышева на множестве значений концентрации водонерастворимых частиц $x_1, x_2, \dots x_n$.

В таблице 4 приведены значения концентрации ТМ в пробах свежевыпавшего снега, определенные экспериментально (C) и вычисленные (C_B) по этому уравнению

Таблица 4 Экспериментальные и вычисленные значения концентрации ТМ, мкг \cdot л $^{-1}$

Высота отбора	Cr		Ni		Mn		
пробы, н.у.м.	С	Св	C	Св	С	Св	
Н = 3500 м	7.31	7.308	2,24	2,240	10,73	10,731	
Н = 3700 м	44.34	44.340	12.75	12.750	84.15	84.150	
H = 4000 M	14.99	14.991	7.58	7.939	35.11	33.852	
Н = 4020 м	16.45	18.469	5.46	5.462	32.60	33.852	
Н = 4300 м	20.49	18.469	8.30	7.939	20.86	20.867	

Как видно из таблицы 4, для указанных элементов их концентрация почти функционально связана с концентрацией водонерастворимых аэрозольных частиц. Коэффициенты детерминации для этих элементов, включая цинк и свинец, выше 0,98 [8].

Выводы и рекомендации

- 1. Полученные результаты по оценке степени связи концентраций ТМ и водонерастворимых частиц указывают на то, что вымываемые микропримеси ТМ довольно тесно связаны как с мелкодисперсной фракцией, так и с крупно- и грубодисперсными фракциями водонерастворимых частиц. Гидрометеоры облаков и осадков интенсивно поглощают аэрозольные частицы и благодаря этому формируют свой химический состав
- 2. Крупные, гигантские и сверхгигантские частицы, осаждающиеся из атмосферы и переносимые воздушными потоками, существенно меняют радиационные свойства подстилающей поверхности. Поэтому изучение их, оценка массы и количества помогут точнее оценить радиационные эффекты, влияющие на режим таяния снежного покрова и сезонных толщ ледников.

Литература

- 1. Методика и некоторые результаты исследований загрязнения сезонных наслоений ледников Приэльбрусья / М.Ч. Залиханов, А.М. Керимов, Г.В. Степанов и др. // Труды ВГИ. М. Гидрометеоиздат, 1984. Вып. 54. С. 134–144.
- Керимов А.М. Микрочастицы в снежном покрове и ледниках // Известия КБНЦ РАН, 1998. №
 1. С. 96–103.

IV. ГЕОЭКОЛОГИЯ. УСТОЙЧИВОЕ РАЗВИТИЕ

- 3. Оценка сухого выпадения аэрозольных частиц в высокогорье Большого Кавказа / А.М. Керимов, Г.В. Степанов, С.И. Степанова, М.М. Черняк // Труды ВГИ, 1987. Вып. 66. С. 87–93.
- 4. *Керимов А.М., Ротомаева О.В., Хмелевской И.Ф.* Особенности формирования химического состава ледников Кабардино Балкарии // МГИ, 1997. № 84. С. 66–71.
- 5. *Керимов А.М.* Оценка годовых сумм осадков по снегозапасам годовых слоев ледников (на примере ледников Адыр-су и Большой Азау) // Труды ВГИ, 1987. Вып. 66. С. 62–66.
- 6. Кондратьев К.Я., Москаленко Н.И., Поздняков Д.В. Атмосферный аэрозоль. Л.: Гидрометеоиздат, 1983. 224 с.
- 7. *Саркисов С.Л., Степанов Г.В., Хоргуани В.Г.* Методика исследования атмосферных аэрозолей при помощи импакторных ловушек // Труды ВГИ, 1971. Вып. 19. С.132–147.
- 8. *Юшкан Е.И.* Подвижные формы тяжелых металлов в аэрозолях и атмосферных осадках фонового района // Мониторинг фонового загрязнения природных сред. Л.: Гидрометеоиздат, 1991. Вып. 7. 219 с.